Skip to main content

Machine Learning for Predicting Gas Adsorption Capacities of Metal Organic Framework

  • Chapter
  • First Online:
Machine Learning and Deep Learning in Computational Toxicology

Part of the book series: Computational Methods in Engineering & the Sciences ((CMES))

  • 990 Accesses

Abstract

Metal organic frameworks (MOFs) have been widely used in gas adsorption-based applications due to their high porosities and modification in chemical and physical properties. There are many MOFs available for applications. However, gas adsorption capacities are not known for most MOFs and it is not practical to experimentally test their gas adsorption capacities. Therefore, a variety of machine learning models have been developed for predicting gas adsorption capacities of MOFs. In this chapter, we summarized the machine learning models developed for predicting gas adsorption capacities of MOFs and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghaji MZ, Fernandez M, Boyd PG, Daff TD, Woo TK (2016) Quantitative structure–property relationship models for recognizing metal organic frameworks (MOFs) with high CO2 working capacity and CO2/CH4 selectivity for methane purification. Eur J Inorg Chem 2016(27):4505–4511

    Article  CAS  Google Scholar 

  • Ahmed A, Siegel DJ (2021) Predicting hydrogen storage in MOFs via machine learning. Patterns 2(7):100291

    Article  CAS  Google Scholar 

  • Ahmed A, Seth S, Purewal J, Wong-Foy AG, Veenstra M, Matzger AJ, Siegel DJ (2019) Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nat Commun 10(1):1568

    Article  Google Scholar 

  • Albert MS, Cates GD, Driehuys B, Happer W, Saam B, Springer CS, Wishnia A (1994) Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370(6486):199–201

    Article  CAS  Google Scholar 

  • Alezi D, Belmabkhout Y, Suyetin M, Bhatt PM, Weseliński ŁJ, Solovyeva V, Adil K, Spanopoulos I, Trikalitis PN, Emwas A-H, Eddaoudi M (2015) MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J Am Chem Soc 137(41):13308–13318

    Article  CAS  Google Scholar 

  • Altintas C, Altundal OF, Keskin S, Yildirim R (2021) Machine learning meets with metal organic frameworks for gas storage and separation. J Chem Inf Model 61(5):2131–2146

    Article  CAS  Google Scholar 

  • Anderson R, Rodgers J, Argueta E, Biong A, Gómez-Gualdrón DA (2018) Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: from molecular simulation to machine learning. Chem Mater 30(18):6325–6337

    Article  CAS  Google Scholar 

  • Anderson G, Schweitzer B, Anderson R, Gómez-Gualdrón DA (2019) Attainable volumetric targets for adsorption-based hydrogen storage in porous crystals: molecular simulation and machine learning. J Phys Chem C 123(1):120–130

    Article  CAS  Google Scholar 

  • Anderson R, Biong A, Gómez-Gualdrón DA (2020) Adsorption isotherm predictions for multiple molecules in MOFs using the same deep learning model. J Chem Theor Comput 16(2):1271–1283

    Google Scholar 

  • Banerjee D, Simon CM, Plonka AM, Motkuri RK, Liu J, Chen X, Smit B, Parise JB, Haranczyk M, Thallapally PK (2016) Metal–organic framework with optimally selective xenon adsorption and separation. Nat Commun 7(1)

    Google Scholar 

  • Batten SR, Champness NR, Chen X-M, Garcia-Martinez J, Kitagawa S, Öhrström L, O’keeffe M, Paik Suh M, Reedijk J (2013) Terminology of metal–organic frameworks and coordination polymers (IUPAC recommendations 2013). Pure Appl Chem 85(8):1715–1724

    Google Scholar 

  • Beauregard N, Pardakhti M, Srivastava R (2021) In silico evolution of high-performing metal organic frameworks for methane adsorption. J Chem Inf Model 61(7):3232–3239

    Article  CAS  Google Scholar 

  • Begum S, Karim ANM, Ansari MNM, Hashmi MSJ (2020) In: Hashmi S, Choudhury IA (eds) Encyclopedia of renewable and sustainable materials. Elsevier, Oxford, pp 515–539

    Google Scholar 

  • Borboudakis G, Stergiannakos T, Frysali M, Klontzas E, Tsamardinos I, Froudakis GE (2017) Chemically intuited, large-scale screening of MOFs by machine learning techniques. npj Comput Mater 3(1):40

    Google Scholar 

  • Boyd PG, Woo TK (2016) A generalized method for constructing hypothetical nanoporous materials of any net topology from graph theory. Cryst Eng Comm 18(21):3777–3792

    Article  CAS  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Bridges WB, Chester AN (1965) Visible and UV laser oscillation at 118 wavelengths in ionized neon, argon, krypton, xenon, oxygen, and other gases. Appl Opt 4(5):573–580

    Article  CAS  Google Scholar 

  • Bucior BJ, Bobbitt NS, Islamoglu T, Goswami S, Gopalan A, Yildirim T, Farha OK, Bagheri N, Snurr RQ (2019) Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks. Mol Syst Des Eng 4(1):162–174

    Article  CAS  Google Scholar 

  • Burns TD, Pai KN, Subraveti SG, Collins SP, Krykunov M, Rajendran A, Woo TK (2020) Prediction of MOF performance in vacuum swing adsorption systems for postcombustion CO2 capture based on integrated molecular simulations, process optimizations, and machine learning models. Environ Sci Technol 54(7):4536–4544

    Article  CAS  Google Scholar 

  • Chellaram C, Murugaboopathi G, John AA, Sivakumar R, Ganesan S, Krithika S, Priya G (2014) Significance of nanotechnology in food industry. APCBEE Proc 8:109–113

    Article  CAS  Google Scholar 

  • Cheng F, Hong H, Yang S, Wei Y (2017) Individualized network-based drug repositioning infrastructure for precision oncology in the panomics era. Brief Bioinform 18(4):682–697

    CAS  Google Scholar 

  • Chong S, Lee S, Kim B, Kim J (2020) Applications of machine learning in metal-organic frameworks. Coord Chem Rev 423:213487

    Article  CAS  Google Scholar 

  • Chung YG, Camp J, Haranczyk M, Sikora BJ, Bury W, Krungleviciute V, Yildirim T, Farha OK, Sholl DS, Snurr RQ (2014) Computation-ready, experimental metal–organic frameworks: a tool to enable high-throughput screening of nanoporous crystals. Chem Mater 26(21):6185–6192

    Article  CAS  Google Scholar 

  • Chung YG, Haldoupis E, Bucior BJ, Haranczyk M, Lee S, Zhang H, Vogiatzis KD, Milisavljevic M, Ling S, Camp JS, Slater B, Siepmann JI, Sholl DS, Snurr RQ (2019) Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: core MOF 2019. J Chem Eng Data 64(12):5985–5998

    Article  CAS  Google Scholar 

  • Colón YJ, Gómez-Gualdrón DA, Snurr RQ (2017) Topologically guided, automated construction of metal–organic frameworks and their evaluation for energy-related applications. Cryst Growth Des 17(11):5801–5810

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Article  Google Scholar 

  • Cullen SC, Gross EG (1951) The anesthetic properties of xenon in animals and human beings, with additional observations on krypton. Science 113(2942):580–582

    Article  CAS  Google Scholar 

  • Deng X, Yang W, Li S, Liang H, Shi Z, Qiao Z (2020) Large-scale screening and machine learning to predict the computation-ready, experimental metal-organic frameworks for CO2 capture from air. Appl Sci 10(2):569

    Article  CAS  Google Scholar 

  • Dureckova H, Krykunov M, Aghaji MZ, Woo TK (2019) Robust machine learning models for predicting high CO2 working capacity and CO2/H2 selectivity of gas adsorption in metal organic frameworks for precombustion carbon capture. J Phys Chem C 123(7):4133–4139

    Article  CAS  Google Scholar 

  • Edelsbrunner H, Harer J (2008) Persistent homology—a survey. Discrete Comput Geom 453

    Google Scholar 

  • Evans JD, Fraux G, Gaillac R, Kohen D, Trousselet F, Vanson J-M, Coudert F-X (2017) Computational chemistry methods for nanoporous materials. Chem Mater 29(1):199–212

    Article  CAS  Google Scholar 

  • Fanourgakis GS, Gkagkas K, Tylianakis E, Klontzas E, Froudakis G (2019) A robust machine learning algorithm for the prediction of methane adsorption in nanoporous materials. J Phys Chem A 123(28):6080–6087

    Article  CAS  Google Scholar 

  • Fanourgakis GS, Gkagkas K, Tylianakis E, Froudakis GE (2020) A universal machine learning algorithm for large-scale screening of materials. J Am Chem Soc 142(8):3814–3822

    Article  CAS  Google Scholar 

  • Fernandez M, Barnard AS (2016) Geometrical properties can predict CO2 and N2 adsorption performance of metal–organic frameworks (MOFs) at low pressure. ACS Comb Sci 18(5):243–252

    Article  CAS  Google Scholar 

  • Fernandez M, Trefiak NR, Woo TK (2013a) Atomic property weighted radial distribution functions descriptors of metal–organic frameworks for the prediction of gas uptake capacity. J Phys Chem C 117(27):14095–14105

    Article  CAS  Google Scholar 

  • Fernandez M, Woo TK, Wilmer CE, Snurr RQ (2013b) Large-scale quantitative structure–property relationship (qspr) analysis of methane storage in metal–organic frameworks. J Phys Chem C 117(15):7681–7689

    Article  CAS  Google Scholar 

  • Fernandez M, Boyd PG, Daff TD, Aghaji MZ, Woo TK (2014) Rapid and accurate machine learning recognition of high performing metal organic frameworks for CO2 capture. J Phys Chem Lett 5(17):3056–3060

    Article  CAS  Google Scholar 

  • Franks NP, Dickinson R, De Sousa SL, Hall AC, Lieb WR (1998) How does xenon produce anaesthesia? Nature 396(6709):324

    Article  CAS  Google Scholar 

  • Gomollón-Bel F (2019) Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable. Chem Int 41(2):12–17

    Google Scholar 

  • Gülsoy Z, Sezginel KB, Uzun A, Keskin S, Yıldırım R (2019) Analysis of CH4 uptake over metal–organic frameworks using data-mining tools. ACS Comb Sci 21(4):257–268

    Google Scholar 

  • Hirscher M (2011) Hydrogen storage by cryoadsorption in ultrahigh-porosity metal–organic frameworks. Angew Chem Int Ed 50(3):581–582

    Article  CAS  Google Scholar 

  • Hoff PW, Swingle JC, Rhodes CK (1973) Observations of stimulated emission from high-pressure krypton and argon/xenon mixtures. Appl Phys Lett 23(5):245–246

    Article  CAS  Google Scholar 

  • Hofmann-Amtenbrink M, Grainger DW, Hofmann H (2015) Nanoparticles in medicine: current challenges facing inorganic nanoparticle toxicity assessments and standardizations. Nanomedicine 11(7):1689–1694

    Article  CAS  Google Scholar 

  • Hong H, Neamati N, Winslow HE, Christensen JL, Orr A, Pommier Y, Milne GW (1998) Identification of HIV-1 integrase inhibitors based on a four-point pharmacophore. Antivir Chem Chemother 9(6):461–472

    Article  CAS  Google Scholar 

  • Hong H, Tong W, Xie Q, Fang H, Perkins R (2005) An in silico ensemble method for lead discovery: decision forest. SAR QSAR Environ Res 16(4):339–347

    Article  CAS  Google Scholar 

  • Hong H, Thakkar S, Chen M, Tong W (2017) Development of decision forest models for prediction of drug-induced liver injury in humans using a large set of FDA-approved drugs. Sci Rep 7(1):17311

    Article  Google Scholar 

  • Hong H, Zhu J, Chen M, Gong P, Zhang C, Tong W (2018) In: Chen M, Will Y (eds) Drug-induced liver toxicity. Springer, New York, pp 77–100

    Google Scholar 

  • Huang Y, Li X, Xu S, Zheng H, Zhang L, Chen J, Hong H, Kusko R, Li R (2020) Quantitative structure–activity relationship models for predicting inflammatory potential of metal oxide nanoparticles. Environ Health Perspect 128(6):067010

    Article  CAS  Google Scholar 

  • Ibarra IA, Yang S, Lin X, Blake AJ, Rizkallah PJ, Nowell H, Allan DR, Champness NR, Hubberstey P, Schröder M (2011) Highly porous and robust scandium-based metal–organic frameworks for hydrogen storage. Chem Commun 47(29):8304–8306

    Article  CAS  Google Scholar 

  • Jablonka KM, Ongari D, Moosavi SM, Smit B (2020) Big-data science in porous materials: materials genomics and machine learning. Chem Rev 120(16):8066–8129

    Article  CAS  Google Scholar 

  • Krishnapriyan AS, Montoya J, Haranczyk M, Hummelshøj J, Morozov D (2021) Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks. Sci Rep 11(1):8888

    Article  CAS  Google Scholar 

  • Lee Y, Barthel SD, Dłotko P, Moosavi SM, Hess K, Smit B (2017) Quantifying similarity of pore-geometry in nanoporous materials. Nat Commun 8(1):15396

    Article  CAS  Google Scholar 

  • Lee S, Kim B, Cho H, Lee H, Lee SY, Cho ES, Kim J (2021) Computational screening of trillions of metal–organic frameworks for high-performance methane storage. ACS Appl Mater Interfaces 13(20):23647–23654

    Article  CAS  Google Scholar 

  • Li Z, Bucior BJ, Chen H, Haranczyk M, Siepmann JI, Snurr RQ (2021) Machine learning using host/guest energy histograms to predict adsorption in metal–organic frameworks: application to short alkanes and Xe/Kr mixtures. J Chem Phys 155(1):014701

    Article  CAS  Google Scholar 

  • Liang H, Jiang K, Yan T-A, Chen G-H (2021) XGboost: an optimal machine learning model with just structural features to discover MOF adsorbents of Xe/Kr. ACS Omega 6(13):9066–9076

    Article  CAS  Google Scholar 

  • Luo H, Ye H, Ng HW, Shi L, Tong W, Mendrick DL, Hong H (2015) Machine learning methods for predicting HLA-peptide binding activity. Bioinform Biol Insights 9(Suppl 3):21–29

    Google Scholar 

  • Ma R, Colón YJ, Luo T (2020) Transfer learning study of gas adsorption in metal–organic frameworks. ACS Appl Mater Interfaces 12(30):34041–34048

    Article  CAS  Google Scholar 

  • Moghadam PZ, Li A, Wiggin SB, Tao A, Maloney AGP, Wood PA, Ward SC, Fairen-Jimenez D (2017) Development of a Cambridge structural database subset: a collection of metal–organic frameworks for past, present, and future. Chem Mater 29(7):2618–2625

    Article  CAS  Google Scholar 

  • Nazarian D, Camp JS, Sholl DS (2016) A comprehensive set of high-quality point charges for simulations of metal–organic frameworks. Chem Mater 28(3):785–793

    Article  CAS  Google Scholar 

  • Nazarian D, Camp JS, Chung YG, Snurr RQ, Sholl DS (2017) Large-scale refinement of metal−organic framework structures using density functional theory. Chem Mater 29(6):2521–2528

    Article  CAS  Google Scholar 

  • Ng HW, Zhang W, Shu M, Luo H, Ge W, Perkins R, Tong W, Hong H (2014) Competitive molecular docking approach for predicting estrogen receptor subtype α agonists and antagonists. BMC Bioinform 15(11):S4

    Article  Google Scholar 

  • Ng HW, Doughty SW, Luo H, Ye H, Ge W, Tong W, Hong H (2015a) Development and validation of decision forest model for estrogen receptor binding prediction of chemicals using large data sets. Chem Res Toxicol 28(12):2343–2351

    Article  CAS  Google Scholar 

  • Ng HW, Shu M, Luo H, Ye H, Ge W, Perkins R, Tong W, Hong H (2015b) Estrogenic activity data extraction and in silico prediction show the endocrine disruption potential of bisphenol a replacement compounds. Chem Res Toxicol 28(9):1784–1795

    Article  CAS  Google Scholar 

  • Ohno H, Mukae Y (2016) Machine learning approach for prediction and search: application to methane storage in a metal–organic framework. J Phys Chem C 120(42):23963–23968

    Article  CAS  Google Scholar 

  • Pardakhti M, Moharreri E, Wanik D, Suib SL, Srivastava R (2017) Machine learning using combined structural and chemical descriptors for prediction of methane adsorption performance of metal organic frameworks (MOFs). ACS Comb Sci 19(10):640–645

    Article  CAS  Google Scholar 

  • Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T (2013) Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J Am Chem Soc 135(32):11887–11894

    Article  CAS  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  • Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y (2019) Energy storage: the future enabled by nanomaterials. Science 366(6468)

    Google Scholar 

  • Ryan P, Farha OK, Broadbelt LJ, Snurr RQ (2011) Computational screening of metal-organic frameworks for xenon/krypton separation. AICHE J 57(7):1759–1766

    Article  CAS  Google Scholar 

  • Sakkiah S, Selvaraj C, Gong P, Zhang C, Tong W, Hong H (2017) Development of estrogen receptor beta binding prediction model using large sets of chemicals. Oncotarget 8(54):92989–93000

    Article  Google Scholar 

  • Sakkiah S, Guo W, Pan B, Ji Z, Yavas G, Azevedo M, Hawes J, Patterson TA, Hong H (2021) Elucidating interactions between sars-cov-2 trimeric spike protein and ACE2 using homology modeling and molecular dynamics simulations. Front Chem 8(1247)

    Google Scholar 

  • Sarkisov L, Harrison A (2011) Computational structure characterisation tools in application to ordered and disordered porous materials. Mol Simul 37(15):1248–1257

    Article  CAS  Google Scholar 

  • Selvaraj C, Sakkiah S, Tong W, Hong H (2018) Molecular dynamics simulations and applications in computational toxicology and nanotoxicology. Food Chem Toxicol 112:495–506

    Article  CAS  Google Scholar 

  • Shen J, Xu L, Fang H, Richard AM, Bray JD, Judson RS, Zhou G, Colatsky TJ, Aungst JL, Teng C, Harris SC, Ge W, Dai SY, Su Z, Jacobs AC, Harrouk W, Perkins R, Tong W, Hong H (2013) EADB: an estrogenic activity database for assessing potential endocrine activity. Toxicol Sci 135(2):277–291

    Article  CAS  Google Scholar 

  • Shi L, Tong W, Fang H, Xie Q, Hong H, Perkins R, Wu J, Tu M, Blair RM, Branham WS, Waller C, Walker J, Sheehan DM (2002) An integrated “4-phase” approach for setting endocrine disruption screening priorities-phase i and ii predictions of estrogen receptor binding affinity. SAR QSAR Environ Res 13(1):69–88

    Google Scholar 

  • Sikora BJ, Wilmer CE, Greenfield ML, Snurr RQ (2012) Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworks. Chem Sci 3(7):2217–2223

    Article  CAS  Google Scholar 

  • Simon CM, Mercado R, Schnell SK, Smit B, Haranczyk M (2015) What are the best materials to separate a xenon/krypton mixture? Chem Mater 27(12):4459–4475

    Article  CAS  Google Scholar 

  • Tan K, Zuluaga S, Gong Q, Gao Y, Nijem N, Li J, Thonhauser T, Chabal YJ (2015) Competitive coadsorption of CO2 with H2O, NH3, SO2, NO, NO2, N2, O2, and CH4 in M-MOF-74 (M = Mg Co, Ni): the role of hydrogen bonding. Chem Mater 27(6):2203–2217

    Article  CAS  Google Scholar 

  • Tan H, Wang X, Hong H, Benfenati E, Giesy JP, Gini GC, Kusko R, Zhang X, Yu H, Shi W (2020) Structures of endocrine-disrupting chemicals determine binding to and activation of the estrogen receptor α and androgen receptor. Environ Sci Technol 54(18):11424–11433

    Article  CAS  Google Scholar 

  • Thornton AW, Simon CM, Kim J, Kwon O, Deeg KS, Konstas K, Pas SJ, Hill MR, Winkler DA, Haranczyk M, Smit B (2017) Materials genome in action: identifying the performance limits of physical hydrogen storage. Chem Mater 29(7):2844–2854

    Article  CAS  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc Ser B (Methodol) 58(1):267–288

    Google Scholar 

  • Willems TF, Rycroft CH, Kazi M, Meza JC, Haranczyk M (2012) Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater 149(1):134–141

    Article  CAS  Google Scholar 

  • Wilmer CE, Leaf M, Lee CY, Farha OK, Hauser BG, Hupp JT, Snurr RQ (2012) Large-scale screening of hypothetical metal–organic frameworks. Nat Chem 4(2):83–89

    Article  CAS  Google Scholar 

  • Wu X, Xiang S, Su J, Cai W (2019) Understanding quantitative relationship between methane storage capacities and characteristic properties of metal–organic frameworks based on machine learning. J Phys Chem C 123(14):8550–8559

    Article  CAS  Google Scholar 

  • Yan Y, Da Silva I, Blake AJ, Dailly A, Manuel P, Yang S, Schröder M (2018) High volumetric hydrogen adsorption in a porous anthracene-decorated metal-organic framework. Inorg Chem 57(19):12050–12055

    Article  CAS  Google Scholar 

  • Yan Y, Zhang L, Li S, Liang H, Qiao Z (2021) Adsorption behavior of metal-organic frameworks: from single simulation, high-throughput computational screening to machine learning. Comput Mater Sci 193:110383

    Article  CAS  Google Scholar 

  • Yu H, Li L, Zhang Y (2012) Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications. Scr Mater 66(11):931–934

    Article  CAS  Google Scholar 

  • Zhang X, Cui J, Zhang K, Wu J, Lee Y (2019) Machine learning prediction on properties of nanoporous materials utilizing pore geometry barcodes. J Chem Inf Model 59(11):4636–4644

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huixiao Hong .

Editor information

Editors and Affiliations

Additional information

Disclaimer: This chapter reflects the views of the authors and does not necessarily reflect those of the U.S. Food and Drug Administration.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, W., Liu, J., Dong, F., Patterson, T.A., Hong, H. (2023). Machine Learning for Predicting Gas Adsorption Capacities of Metal Organic Framework. In: Hong, H. (eds) Machine Learning and Deep Learning in Computational Toxicology. Computational Methods in Engineering & the Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-20730-3_28

Download citation

Publish with us

Policies and ethics