Skip to main content

Genome Comparison on Succinct Colored de Bruijn Graphs

  • Conference paper
  • First Online:
String Processing and Information Retrieval (SPIRE 2022)

Abstract

The improvements in DNA sequence technologies have increased the volume and speed at which genomic data is acquired. Nevertheless, due to the difficulties for completely assembling a genome, many genomes are left in a draft state, in which each chromosome is represented by a set of sequences with partial information on their relative order. Recently, some approaches have been proposed to compare genomes by comparing extracted paths from de Bruijn graphs and comparing such paths. The idea of using data from de Bruijn graphs is interesting because such graphs are built by many practical genome assemblers. In this article we introduce gcBB, a method for comparing genomes represented as succinct de Bruijn graphs directly, without resorting to sequence alignments, by means of the entropy and expectation measures based on the Burrows-Wheeler Similarity Distribution (BWSD). We have compared phylogenies of genomes obtained by other methods to those obtained with gcBB, achieving promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.illumina.com/systems/sequencing-platforms/nextseq.html.

  2. 2.

    https://nanoporetech.com/products/minion.

  3. 3.

    https://github.com/lucaspr98/gcBB.

References

  1. Boc, A., Diallo, A.B., Makarenkov, V.: T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Res. 40(W1), W573–W579 (2012)

    Article  Google Scholar 

  2. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de Bruijn graphs. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225–235. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33122-0_18

    Chapter  Google Scholar 

  3. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Technical report. 124, Systems Research Center (1994)

    Google Scholar 

  4. De Bruijn, N.G.: A combinatorial problem. In: Proceedings of the Koninklijke Nederlandse Academie van Wetenschappen, vol. 49, pp. 758–764 (1946)

    Google Scholar 

  5. Egidi, L., Louza, F.A., Manzini, G., Telles, G.P.: External memory BWT and LCP computation for sequence collections with applications. Algorithms Mol. Biol. 14(1), 1–15 (2019)

    Article  MATH  Google Scholar 

  6. Hahn, M.W., Han, M.V., Han, S.G.: Gene family evolution across 12 drosophila genomes. PLoS Genet. 3(11), e197 (2007)

    Google Scholar 

  7. Kolmogorov, M., et al.: metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17(11), 1103–1110 (2020)

    Article  Google Scholar 

  8. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat. Methods 9(4), 357 (2012)

    Article  Google Scholar 

  9. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14), 1754–1760 (2009)

    Article  Google Scholar 

  10. Lyman, C.A., et al.: Whole genome phylogenetic tree reconstruction using colored de Bruijn graphs. In: 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 260–265. IEEE (2017)

    Google Scholar 

  11. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. SIAM J. Comput. 22(5), 935–948 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: An extension of the Burrows-Wheeler transform. Theor. Comput. Sci. 387(3), 298–312 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mantaci, S., Restivo, A., Sciortino, M.: Distance measures for biological sequences: some recent approaches. Int. J. Approximate Reasoning 47(1), 109–124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Navarro, G.: Compact Data Structures: A Practical Approach. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  15. Polevikov, E., Kolmogorov, M.: Synteny paths for assembly graphs comparison. In: 19th International Workshop on Algorithms in Bioinformatics (WABI 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

    Google Scholar 

  16. Rice, E.S., Green, R.E.: New approaches for genome assembly and scaffolding. Ann. Rev. Animal Biosci. 7(1), 17–40 (2019)

    Article  Google Scholar 

  17. Rizzi, R., et al.: Overlap graphs and de Bruijn graphs: data structures for de novo genome assembly in the big data era. Quant. Biol. 7(4), 278–292 (2019)

    Article  Google Scholar 

  18. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci. 53(1–2), 131–147 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)

    Google Scholar 

  20. Simpson, J.T., Durbin, R.: Efficient de novo assembly of large genomes using compressed data structures. Genome Res. 22(3), 549–556 (2012)

    Article  Google Scholar 

  21. Thurmond, J., et al.: FlyBase 2.0: the next generation. Nucleic Acids Res. 47(D1), D759–D765 (2018)

    Google Scholar 

  22. Yang, L., Zhang, X., Wang, T.: The Burrows-Wheeler similarity distribution between biological sequences based on Burrows-Wheeler transform. J. Theor. Biol. 262(4), 742–749 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Marinella Sciortino for helpful discussions and thank Prof. Nalvo Almeida for granting access to the computer used in the experiments.

Funding

L.P.R. acknowledges that this study was financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil, Financing Code 001. F.A.L. acknowledges the financial support from CNPq (grant number 406418/2021-7) and FAPEMIG (grant number APQ-01217-22). G.P.T. acknowledges the financial support of Brazilian agencies CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas P. Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramos, L.P., Louza, F.A., Telles, G.P. (2022). Genome Comparison on Succinct Colored de Bruijn Graphs. In: Arroyuelo, D., Poblete, B. (eds) String Processing and Information Retrieval. SPIRE 2022. Lecture Notes in Computer Science, vol 13617. Springer, Cham. https://doi.org/10.1007/978-3-031-20643-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20643-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20642-9

  • Online ISBN: 978-3-031-20643-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics