Skip to main content

MCSP is Hard for Read-Once Nondeterministic Branching Programs

  • Conference paper
  • First Online:
LATIN 2022: Theoretical Informatics (LATIN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13568))

Included in the following conference series:

Abstract

We show that every read-once nondeterministic branching program computing the Minimum Circuit Size Problem on inputs of length N has size \(\varOmega (N^{\log \log (N)})\). This is the first superpolynomial lower bound on the size of computing \({\textsc {MCSP} }\). This lower bound is tight for the version of \({\textsc {MCSP} }\) restricted to a linear circuit size parameter.

To show this result we adapt a conditional lower bound of Ilango [10] on the deterministic Turing Machine time complexity of computing \({\textsc {MCSP} }^{*}\), the generalization of \({\textsc {MCSP} }\) to partial functions. In contrast, our lower bound is unconditional and holds even for the total \({\textsc {MCSP} }\) function.

En route, we get two results that may be of independent interest:

  • The size of the minimal computing \({\textsc {MCSP} }\) equals, up to a constant factor, the size of the minimal computing \({\textsc {MCSP} }^{*}\);

  • The size of any computing \((2n \times 2n)\)-Bipartite Independent Set is \(\varOmega (n!)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes are also called decision diagrams.

  2. 2.

    See Lemma 14 in [4].

  3. 3.

    OBDD is a in which variables in every path from the source to a sink appear in the same order.

  4. 4.

    We will instantiate this definition for \(D = \{0,1\}\) and \(D = \{0,1,*\}\).

  5. 5.

    We ignore all the edges except for ones between the sets \([n] \times [n]\) and \(\{n+1,\dots 2n\} \times \{n+1,\dots ,2n\}\), the second argument is represented in binary form.

  6. 6.

    Notice that here * is a value of a variable and does not indicate that a variable is unassigned.

References

  1. Borodin, A., Razborov, A.A., Smolensky, R.: On lower bounds for read-K-times branching programs. Comput. Complex. 3, 1–18 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, L., Jin, C., Ryan Williams, R.: Hardness magnification for all sparse NP languages. In: FOCS 2019, pp. 1240–1255. IEEE Computer Society (2019)

    Google Scholar 

  3. Cheraghchi, M., Hirahara, S., Myrisiotis, D., Yoshida, Y.: One-tape turing machine and branching program lower bounds for MCSP. In: Bläser, M., Monmege, B. (eds.) 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021), vol. 187, pp. 23:1–23:19. Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl (2021). ISBN 978-3-95977-180-1. https://doi.org/10.4230/LIPIcs.ICALP.2019.39. https://drops.dagstuhl.de/opus/volltexte/2021/13668

  4. Cheraghchi, M., Kabanets, V., Lu, Z., Myrisiotis, D.: Circuit lower bounds for MCSP from local pseudorandom generators. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, Patras, Greece, July 2019, vol. 132, pp. 9–12 (2019). LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik 39(1–39), 14 (2019). https://doi.org/10.4230/LIPIcs.STACS.2021.23

  5. Cobham, A.: The recognition problem for the set of perfect squares. In: 7th Annual Symposium on Switching and Automata Theory (SWAT 1966), pp. 78–87. https://doi.org/10.1109/SWAT.1966.30

  6. Find, M.G., Golovnev, A., Hirsch, E.A., Kulikov, A.S.: A better-than-3n lower bound for the circuit complexity of an explicit function. In: FOCS 2016, pp. 89–98. IEEE Computer Society (2016)

    Google Scholar 

  7. Forbes, M.A., Kelley, Z.: Pseudorandom generators for readonce branching programs, in any order. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 946–955. IEEE (2018)

    Google Scholar 

  8. Glinskih, L., Itsykson, D.: Satisfiable Tseitin formulas are hard for nondeterministic read-once branching programs. In: Larsen, K.G., Bodlaender, H.L., Raskin, J.-F. (eds.) 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017), vol. 83. Leibniz International Proceedings in Informatics (LIPIcs) (2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl 26(1–26), 12 (2017). ISBN 978-3-95977-046-0. https://doi.org/10.4230/LIPIcs.MFCS.2017.26. https://drops.dagstuhl.de/opus/volltexte/2017/8076

  9. Golovnev, A., Ilango, R., Impagliazzo, R., Kabanets, V., Kolokolova, A., Tal, A.: AC0[p] lower bounds against MCSP via the coin problem. In: ICALP, vol. 132, pp. 66:1–66:15. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  10. Ilango, R.: Constant depth formula and partial function versions of MCSP are hard. In: FOCS 2020, pp. 424–433. IEEE (2020)

    Google Scholar 

  11. Ilango, R., Ren, H., Santhanam, R.: Hardness on any samplable distribution suffices: new characterizations of one-way functions by meta-complexity. In: Electronic Colloquium on Computational Complexity, p. 82 (2021)

    Google Scholar 

  12. Kabanets, V., Cai, J.: Circuit minimization problem. In: STOC, pp. 73–79. ACM (2000)

    Google Scholar 

  13. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized problems. SIAM J. Comput. 47(3), 675–702 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lukas, S., Czort, S.L.A.: The complexity of minimizing disjunctive normal form formulas (1999)

    Google Scholar 

  15. McKay, D.M., Murray, C.D., Ryan Williams, R.: Weak lower bounds on resource-bounded compression imply strong separations of complexity classes. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pp. 1215–1225. Association for Computing Machinery, Phoenix (2019). ISBN 9781450367059

    Google Scholar 

  16. Murray, C.D., Ryan Williams, R.: On the (non) NP-hardness of computing circuit complexity. Theory Comput. 13(4), 1–22 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pratt, V.R.: The effect of basis on size of boolean expressions. In: FOCS, pp. 119–121. IEEE Computer Society (1975)

    Google Scholar 

  18. Santhanam, R.: Pseudorandomness and the minimum circuit size problem. In: ITCS, vol. 151, pp. 68:1–68:26. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  19. Sieling, D.: The complexity of minimizing and learning OBDDs and FBDDs. Discret. Appl. Math. 122(1), 263–282 (2002). ISSN 0166-218X. https://doi.org/10.1016/S0166-218X(01)00324-9. https://www.sciencedirect.com/science/article/pii/S0166218X01003249

  20. Smolensky, R.: On representations by low-degree polynomials. In: Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science, pp. 130–138 (1993). https://doi.org/10.1109/SFCS.1993.366874

Download references

Acknowledgements

We thank Mark Bun, Marco Carmosino, and the anonymous reviewers for their helpful comments and suggestions.

Ludmila Glinskih was supported by NSF grants CCF-1947889 and CCF-1909612. Artur Riazanov received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 802020-ERC-HARMONIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Riazanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glinskih, L., Riazanov, A. (2022). MCSP is Hard for Read-Once Nondeterministic Branching Programs. In: Castañeda, A., Rodríguez-Henríquez, F. (eds) LATIN 2022: Theoretical Informatics. LATIN 2022. Lecture Notes in Computer Science, vol 13568. Springer, Cham. https://doi.org/10.1007/978-3-031-20624-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20624-5_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20623-8

  • Online ISBN: 978-3-031-20624-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics