Abstract
Artificial muscles, made of soft and compliant materials, are one the main components of soft robots. In any case, and independent from the type and design of such actuators, the choice of material and fabrication process plays a critical role for their performance. Dielectric Elastomer Actuators (DEAs), also known as a subset of artificial muscles, are made of thin elastomer layers embedded between two layers of soft electrodes. In the journey of finding a suitable elastomer material with relatively low elastic modulus, high relative permittivity, and high dielectric breakdown strength, we found the ECOFLEXTM00–10 mixed with SILICONE THINNER™ as a promising candidate. In this paper, first we investigate into the mechanical and electrical properties of this silicone-based elastomer. Then, we explain the fabrication method of these soft actuators. Finally, after describing how the implementation of rigid poly(methyl methacrylate) (PMMA) structure makes the actuator bend, we present a bending actuator.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Carpi, Federico (ed.): Electromechanically Active Polymers: A Concise Reference. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-31767-0
Carpi, F. (ed.): Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. Elsevier, Amsterdam (2008)
Lee, U.G., Kim, W.-B., Han, D.H., Chung, H.S.: A Modified equation for thickness of the film fabricated by spin coating. Symmetry 11(9), 1183 (2019)
ISO 37:2017-11: Rubber, vulcanized or thermoplastic – Determination of tensile stress-strain properties
Shigemune, H., et al.: Dielectric elastomer actuators with carbon nanotube electrodes painted with a soft brush. Actuators 7(3), 51 (2018)
Jamali, A., Knoerlein, R., Goldschmidtboeing, F., Woias, P.: Development of a Scalable Soft Finger Gripper for Soft Robots. Accepted for Hilton Head Workshop 2022, Hilton Head, USA
Vaicekauskaite, J., Mazurek, P., Vudayagiri, S., Skov, A.L.: Mapping the mechanical and electrical properties of commercial silicone elastomer formulations for stretchable transducers. J. Mater. Chem. C 8(4), 1273–1279 (2020)
Acknowledgement
Funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany’s Excellence Strategy – EXC-2193/1 – 390951807.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jamali, A., Knoerlein, R., Goldschmidtboeing, F., Woias, P. (2022). Development and Characterization of a Soft Bending Actuator. In: Hunt, A., et al. Biomimetic and Biohybrid Systems. Living Machines 2022. Lecture Notes in Computer Science(), vol 13548. Springer, Cham. https://doi.org/10.1007/978-3-031-20470-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-20470-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20469-2
Online ISBN: 978-3-031-20470-8
eBook Packages: Computer ScienceComputer Science (R0)