Skip to main content

Continuous Dynamics Distinguishability

  • Chapter
  • First Online:
H-Systems

Abstract

In this chapter, we analyze the possibility of determining the current discrete state of an LH-system by using only the continuous output information. The identification of the discrete mode of a hybrid system corresponds to understanding which continuous dynamical system is evolving. The main role in the solution to this problem is played by the notion of distinguishability of a pair of dynamical systems, i.e. the possibility of inferring on the basis of the continuous output information which of the two systems is indeed active. This property is characterized in terms of input–output behavior. Always using the continuous information, we investigate the possibility of determining only the switching times, not the complete information about which discrete mode is active. Algorithmic tools are provided for the reconstruction of the current evolving system, in the continuous and discrete time domain. The analysis is extended to the case of discrete time systems with output corrupted by external malicious attacks on sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our setting, the state dimension is the same for all the involved linear systems. The results on distinguishability also hold if the state dimensions of the given systems are not the same, since, as it will be seen, the necessary and sufficient conditions for distinguishability are based on the systems’ input-output responses.

References

  1. Babaali M, Egerstedt M (2004) Observability of switched linear systems. In: Alur R, Pappas GJ (eds) Hybrid systems: computation and control 2004. Lecture notes in computer science. Springer, Berlin, pp 48–63

    Google Scholar 

  2. Babaali M, Pappas GJ (2005) Observability of switched linear systems in continuous time. In: Morari LTM, Rossi F (eds) Hybrid systems: computation and control 2005. Lecture notes in computer science, vol 3414. Springer, Berlin, pp 103–117

    Google Scholar 

  3. Baglietto M, Battistelli G, Scardovi L (2007) Active mode observability of switching linear systems. Automatica 43:1442–1449

    Article  MathSciNet  MATH  Google Scholar 

  4. Baglietto M, Battistelli G, Scardovi L (2009) Active mode observation of switching systems based on set-valued estimation of the continuous state. Int J Robust Nonlinear Control 19(14):1521–1540

    Article  MathSciNet  MATH  Google Scholar 

  5. Baglietto M, Battistelli G, Tesi P (2014) Discerning controllers for switching linear systems: existence and genericity. Automatica 50:2358–2365

    Article  MathSciNet  MATH  Google Scholar 

  6. Baglietto M, Battistelli G, Tesi P (2014) Distinguishability of discrete-time nonlinear systems. IEEE Trans Automat Control 59(4):1014–1020

    Article  MathSciNet  MATH  Google Scholar 

  7. Baglietto M, Battistelli G, Tesi P (2014) Mode-observability degree in discrete-time switching linear systems. Syst & Control Lett 70:69–76

    Article  MathSciNet  MATH  Google Scholar 

  8. Basile G, Marro G (1992) Controlled and conditioned invariants in linear system theory. Prentice-Hall, Hoboken

    MATH  Google Scholar 

  9. Battistelli G (2013) On stabilization of switching linear systems. Automatica 49:1162–1173

    Article  MathSciNet  MATH  Google Scholar 

  10. Battistelli G, Tesi P (2016) Detecting topology variations in networks of linear systems with static coupling. In: Proceedings of the 55th conference on decision and control (CDC). ARIA Resort & Casino, Las Vegas, USA

    Google Scholar 

  11. Battistelli G, Tesi P (2018) Detecting topology variations in networks of linear dynamical systems. IEEE Trans Control Netw Syst 5(3):1287–1299

    Article  MathSciNet  MATH  Google Scholar 

  12. Bejarano FJ, Mera M (2020) Continuous state observability and mode reconstructability of switched nonlinear systems with unknown switching function. Int J Robust Nonlinear Control 31(3)

    Google Scholar 

  13. Boubaker S, Djemai M, Manamanni N, M’Sahlii F (2014) Active modes and switching instants identification for linear switched systems based on discrete particle swarm optimization. Appl Soft Comput 14:482–488

    Article  Google Scholar 

  14. Caravani P, De Santis E (2012) On distributed mode-observability of multimodal systems. In: Proceedings of the 51st IEEE conference on decision and control, Maui, HI, USA, pp 2226–2231

    Google Scholar 

  15. Chaib S, Boutat D, Benali A, Barbot JP (2005) Observability of the discrete state for dynamical piecewise hybrid systems. Nonlinear Analysis: Theory Methods Appl, 63(3):423–438

    Google Scholar 

  16. Chang YH, Hu Q, Tomlin CJ (2016) Secure estimation based Kalman filter for cyber-physical systems against adversarial attacks. arXiv:1512.03853v2

  17. Chong MS, Wakaiki M, Hespanha JP (2015) Observability of linear systems under adversarial attacks. In: American control conference (ACC), pp 2439–2444

    Google Scholar 

  18. De Santis E (2011) On location observability notions for switching systems. Syst & Control Lett 60:807–814

    Article  MathSciNet  MATH  Google Scholar 

  19. De Santis E, Di Benedetto MD, Di Gennaro S, D’Innocenzo A, Pola G (2006) Critical observability of a class of hybrid systems and application to air traffic management. Lecture notes in control and information sciences, vol 337. Springer, Berlin, pp 141–170

    Google Scholar 

  20. De Santis E, Di Benedetto MD, Pola G (2003) On observability and detectability of continuous-time linear switching systems. In: Proceedings of the 42nd IEEE conference on decision and control, CDC 03, Maui, Hawaii, USA, pp 5777–5782

    Google Scholar 

  21. Debus TJ, Dupont PE, Howe RD (2005) Distinguishability and identifiability testing of contact state systems. Adv Robot 19(5):545–566

    Article  Google Scholar 

  22. Fawzi H, Tabuada P, Diggavi S (2011) Secure state-estimation for dynamical systems under active adversaries. In: 2011 49th annual allerton conference on communication, control, and computing (Allerton), pp 337–344

    Google Scholar 

  23. Fawzi H, Tabuada P, Diggavi S (2014) Secure estimation and control for cyber-physical systems under adversarial attacks. IEEE Trans Autom Control 59(6):1454–1467

    Article  MathSciNet  MATH  Google Scholar 

  24. Fiore G (2017) Secure state estimation for cyber-physical systems. PhD thesis, University of L’Aquila, Department of Information Engineering, Computer Science and Mathematics

    Google Scholar 

  25. Fiore G, Chang YH, Hu Q, Di Benedetto MD, Tomlin CJ (2017) Secure state estimation for cyber physical systems with sparse malicious packet drops. In: 2017 American control conference (ACC), pp 1898–1903

    Google Scholar 

  26. Fiore G, De Santis E, Di Benedetto MD (2017) Secure mode distinguishability for switching systems subject to sparse attacks. IFAC-PapersOnLine 50(1):9361–9366. 20th IFAC World Congress

    Google Scholar 

  27. Fliess M, Join C, Perruquetti W (2008) Real-time estimation for switched linear systems. In: Proceedings of the 47th IEEE conference on decision and control, Cancun, Mexico, pp 941–946

    Google Scholar 

  28. Gómez-Gutiérrez D, Ramírez-Trevińo A, Ruiz-Leõn J, Di Gennaro S (2012) On the observability of continuous-time switched linear systems under partially unknown inputs. IEEE Trans Autom Control 57(3):732–738

    Article  MathSciNet  MATH  Google Scholar 

  29. Gómez-Gutiérrez D, Čelikovský S, Ramírez-Trevińo A, Castillo-Toledo B (2015) On the observer design problem for continuous-time switched linear systems with unknown switchings. J Frankl Instit 352:1595–1612

    Article  MathSciNet  MATH  Google Scholar 

  30. Halimi M, Millérioux G, Daafouz J (2015) Model-based modes detection and discernibility for switched affine discrete-time systems. IEEE Trans Autom Control 60:1501–1514

    Article  MathSciNet  MATH  Google Scholar 

  31. Harirchi F, Ozay N (2018) Guaranteed model-based fault detection in cyber-physical systems: a model invalidation approach. Automatica 93:476–488

    Google Scholar 

  32. Huang K, Wagner A, Ma Y (2004) Identification of hybrid linear time invariant systems via subspace embedding and segmentation. In: Proceedings of 43rd IEEE conference on decision and control, Atlantis, Paradise Island, Bahamas, pp 3227–3234

    Google Scholar 

  33. Johnson SC, DeCarlo RA, Zefran M (2014) Set-transition observability of switched linear systems. In: Proceedings of the 2014 American control conference, pp 3267–3272

    Google Scholar 

  34. Kratz W (1995) Characterization of strong observability and construction of an observer. Linear Agebra Appl 221:31–40

    Article  MathSciNet  MATH  Google Scholar 

  35. Levant A (2003) Higher-order sliding modes: differentiation and output-feedback control. Int J Control 76(9–10):924–941

    Article  MathSciNet  MATH  Google Scholar 

  36. Lomov AA (2003) Distinguishability conditions for stationary linear systems. Diff Equ 39(2):283–288

    Article  MATH  Google Scholar 

  37. Lou H, Si P (2009) The distinguishability of linear control systems. Nonlinear Anal: Hybrid Syst 3:21–38

    MathSciNet  MATH  Google Scholar 

  38. Lou H, Yang R (2011) Conditions for distinguishability and observability of switched linear systems. Nonlinear Anal: Hybrid Syst 5:427–445

    MathSciNet  MATH  Google Scholar 

  39. Luenberger DG (1971) An introduction to observers. IEEE Trans Autom Control 16(6):596–602

    Article  MathSciNet  Google Scholar 

  40. Massoumnia MA, Verghese GC, Willsky AS (1989) Failure detection and identification. IEEE Trans Autom Control 34(3):316–321

    Article  MathSciNet  MATH  Google Scholar 

  41. Mera M, Bejarano FJ (2020) On mode reconstructability and reconstructability sets of piecewise linear systems. Int J Control 0(0):1–9

    Google Scholar 

  42. Mesbahi M, Egerstedt M (2010) Graph theoretic methods in multiagent networks. Princeton University Press, Princeton

    Google Scholar 

  43. Motchon KMD, Pekpe KM, Cassar JP (2017) Conditions for strict distinguishability of single-output nonlinear control-affine systems. Syst & Control Lett 105:20–26

    Article  MathSciNet  MATH  Google Scholar 

  44. Motchon KMD, Pekpe KM, Cassar JP (2018) Robust discerning controls for the operating modes of linear switched systems subject to bounded unknown inputs. Automatica 96:159–165

    Article  MathSciNet  MATH  Google Scholar 

  45. Motchon KMD, Pekpe KM, Cassar JP, De Bièvre S (2016) On the input-output distinguishability of single output continuous linear time-invariant systems. IEEE Trans Autom Control 61(7):1906–1911

    Article  MathSciNet  MATH  Google Scholar 

  46. Motchon MD, Pekpe KM (2019) Necessary and sufficient condition for controlled distinguishability of continuous-time bilinear systems. IEEE Trans Autom Control 64(7):3013–3018

    Article  MathSciNet  MATH  Google Scholar 

  47. Niu R, Hassaan SM, Yang L, Jin Z, Yong SZ (2022) Model discrimination of switched nonlinear systems with temporal logic-constrained switching. IEEE Control Syst Lett 6:151–156

    Article  MathSciNet  Google Scholar 

  48. Patil D, Tesi P, Trenn S (2019) Indiscernible topological variations in dae networks. Automatica 101:280–289

    Article  MathSciNet  MATH  Google Scholar 

  49. Ramdani N, Travé-Massuyes L, Jauberthie C (2018) Mode discernibility and bounded-error state estimation for nonlinear hybrid systems. Automatica 31:118–125

    Article  MathSciNet  MATH  Google Scholar 

  50. Shoukry Y, Chong M, Wakaiki M, Nuzzo P, Sangiovanni-Vincentelli AL, Seshia SA, Hespanha JP, Tabuada P (2016) SMT-based observer design for cyber-physical systems under sensor attacks. In: 2016 ACM/IEEE 7th international conference on cyber-physical systems (ICCPS), pp 1–10

    Google Scholar 

  51. Shoukry Y, Nuzzo P, Bezzo N, Sangiovanni-Vincentelli AL, Seshia SA, Tabuada P (2015) Secure state reconstruction in differentially flat systems under sensor attacks using satisfiability modulo theory solving. In: 2015 54th IEEE conference on decision and control (CDC), pp 3804–3809

    Google Scholar 

  52. Shoukry Y, Tabuada P (2016) Event-triggered state observers for sparse sensor noise/attacks. IEEE Trans Autom Control 61(8):2079–2091

    Article  MathSciNet  MATH  Google Scholar 

  53. Sontag ED (1979) On the observability of polynomial systems, i: finite-time problems. SIAM J Control Optim 17(1):139–151

    Article  MathSciNet  MATH  Google Scholar 

  54. Sun D, Hwang I (2022) On controlled mode discernibility for nonlinear hybrid systems with unknown exogenous input. Automatica 142

    Google Scholar 

  55. Sun D, Hwang I, Corless M (2022) Controlled mode distinguishability for cybersecurity. IEEE Control Syst Lett 6:998–1003

    Article  MathSciNet  Google Scholar 

  56. Sundaran S, Hadjicostis C (2011) Distributed function calculation via linear iterative strategies in the presence of malicious agents. IEEE Trans Autom Control 56(7):1495–1508

    Article  MathSciNet  MATH  Google Scholar 

  57. Teixeira A, Shames I, Sandberg H, Johansson KH (2015) A secure control framework for resource-limited adversaries. Automatica 51:135–148

    Article  MathSciNet  MATH  Google Scholar 

  58. Tian Y, Floquet T, Belkoura L, Perruquetti W (2011) Algebraic switching time identification for a class of linear hybrid systems. Nonlinear Anal: Hybrid Syst 5:233–241

    MathSciNet  MATH  Google Scholar 

  59. Vidal R, Chiuso A, Soatto S (2002) Observability and identificability of jump linear systems. In: Proceedings of the 41st IEEE conference on decision and control, Las Vegas, Nevada, pp 3614–3619

    Google Scholar 

  60. Vu L, Liberzon D (2008) Invertibility of switched linear systems. Automatica 44:949–958

    Article  MathSciNet  MATH  Google Scholar 

  61. Vázquez CR, Gómez-Gutiérrez D, Ramírez-Trevińo A (2020) Observer design for linear hybrid systems with unknown inputs and petri-net discrete dynamics. Nonlinear Anal: Hybrid Syst 36

    Google Scholar 

  62. Walter E, Pronzato L (1996) On the identifiability and distinguishability of non-linear parametric systems. Math Comput Simul 42(42):125–134

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena De Santis .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Santis, E., Di Benedetto, M.D. (2023). Continuous Dynamics Distinguishability. In: H-Systems. Communications and Control Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-20447-0_7

Download citation

Publish with us

Policies and ethics