Skip to main content

Broadband Recursive Skeletonization

  • 346 Accesses

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 137)

Abstract

The dense linear systems arising from the discretization of integral equations have in last few decades been rendered tractable through the development of techniques such as the Fast Multipole Method, Fast Direct Solvers, \(\mathcal {H}\)-matrix methods, etc. These algorithms depend crucially on the low-rank approximation of dense interactions between disjoint subsets of the computational domain. The key result of the present work is the discovery that for time-harmonic wave scattering problems, it is possible to build “universal bases” that enable efficient low rank approximation across a whole range of wavenumbers. In many cases, the number of basis functions is almost exactly the same as the number required to resolve only the highest wavenumber in the band, which is known to be determined by the “two points per wavelength” heuristic of Shannon. As an application of the new observation, the manuscript describes a numerical technique for solving time-harmonic scattering problems in the regime where a large set of wavenumbers within a specified range are considered. The technique relies on a boundary integral equation formulation that is coupled with a fast direct solver that relies on the universal basis idea to greatly accelerate the “compression stage” where a rank-structured approximation to a large dense matrix is constructed. The accuracy and effectiveness of the procedure is illustrated with several numerical experiments.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55. US Government Printing Office, Washington (1964)

    MATH  Google Scholar 

  2. Ambikasaran, S., Borges, C., Imbert-Gerard, L.M., Greengard, L.: Fast, adaptive, high-order accurate discretization of the Lippmann–Schwinger equation in two dimensions. SIAM J. Sci. Comput. 38(3), A1770–A1787 (2016)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Anderson, T.G., Bruno, O.P., Lyon, M.: High-order, dispersionless fast-hybrid wave equation solver. Part I: \(\mathcal {O}(1)\) sampling cost via incident-field windowing and recentering. SIAM J. Sci. Comput. 42(2), A1348–A1379 (2020)

    Google Scholar 

  4. Anselone, P.: Collectively Compact Operator Approximation Theory. Prentice Hall Series in Automatic Computation. Prentice Hall, Hoboken (1971)

    Google Scholar 

  5. Askham, T., Rachh, M.: A boundary integral equation approach to computing eigenvalues of the Stokes operator. Adv. Comput. Math. 46(2), 1–42 (2020)

    CrossRef  MATH  MathSciNet  Google Scholar 

  6. Ballani, J., Kressner, D.: Matrices with hierarchical low-rank structures. In: Exploiting Hidden Structure in Matrix Computations: Algorithms and Applications, pp. 161–209. Springer, Berlin (2016)

    Google Scholar 

  7. Bebendorf, M.: Hierarchical Matrices. Springer, Berlin/Heidelberg (2008)

    MATH  Google Scholar 

  8. Borges, C., Gillman, A., Greengard, L.: High resolution inverse scattering in two dimensions using recursive linearization. SIAM J. Imag. Sci. 10(2), 641–664 (2017)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Börm, S.: \(\mathcal {H}^2\)-matrix arithmetics in linear complexity. Computing 77(1), 1–28 (2006)

    Google Scholar 

  10. Börm, S.: Construction of data-sparse \(\mathcal {H}^2\)-matrices by hierarchical compression. SIAM J. Sci. Comput. 31(3), 1820–1839 (2009)

    Google Scholar 

  11. Börm, S.: Efficient Numerical Methods for Non-local Operators: \(\mathcal {H}^2\)-matrix Compression, Algorithms and Analysis. Tracts in Mathematics, vol. 14. European Mathematical Society, Madralin (2010)

    Google Scholar 

  12. Börm, S., Grasedyck, L., Hackbusch, W.: Hierarchical Matrices. Lecture Notes, Max Planck Institute for Mathematics in the Sciences, vol. 21 (2003)

    Google Scholar 

  13. Bremer, J.: On the Nyström discretization of integral equations on planar curves with corners. Appl. Comput. Harmonic Anal. 32(1), 45–64 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Bremer, J., Gillman, A., Martinsson, P.G.: A high-order accurate accelerated direct solver for acoustic scattering from surfaces. BIT Numer. Math. 55(2), 367–397 (2015)

    CrossRef  MATH  MathSciNet  Google Scholar 

  15. Bucci, O.M., Franceschetti, G.: On the spatial bandwidth of scattered fields. IEEE Trans. Antennas Propag. 35(12), 1445–1455 (1987)

    CrossRef  Google Scholar 

  16. Bucci, O.M., Franceschetti, G.: On the degrees of freedom of scattered fields. IEEE Trans. Antennas Propag. 37(7), 918–926 (1989)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 1–37 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Chandrasekaran, S., Gu, M., Lyons, W.: A fast adaptive solver for hierarchically semiseparable representations. Calcolo 42(3), 171–185 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Chandrasekaran, S., Gu, M., Pals, T.: A fast ULV decomposition solver for hierarchically semiseparable representations. SIAM J. Matrix Anal. Appl. 28(3), 603–622 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Chandrasekaran, S., Dewilde, P., Gu, M., Lyons, W., Pals, T.: A fast solver for HSS representations via sparse matrices. SIAM J. Matrix Anal. Appl. 29(1), 67–81 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  22. Chen, Y.: A fast, direct algorithm for the Lippmann–Schwinger integral equation in two dimensions. Adv. Comput. Math. 16(2), 175–190 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  23. Cheng, H., Gimbutas, Z., Martinsson, P.G., Rokhlin, V.: On the compression of low rank matrices. SIAM J. Sci. Comput. 26(4), 1389–1404 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  24. Chew, W.C., Jin, J.M., Michielssen, E.: Fast and Efficient Algorithms in Computational Electromagnetics. Artech House, Norwood (2001)

    Google Scholar 

  25. Cohen, M.B.: Nearly tight oblivious subspace embeddings by trace inequalities. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 278–287. SIAM, Philadelphia (2016)

    Google Scholar 

  26. Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Classics in Applied Mathematics. SIAM, Philadelphia (2013)

    Google Scholar 

  27. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93, 4th edn. Springer, New York (2019)

    CrossRef  MATH  Google Scholar 

  28. Crutchfield, W., Gimbutas, Z., Greengard, L., Huang, J., Rokhlin, V., Yarvin, N., Zhao, J.: Remarks on the implementation of wideband FMM for the Helmholtz equation in two dimensions. Contemp. Math. 408(01) (2006)

    Google Scholar 

  29. Dolgov, S., Kressner, D., Strossner, C.: Functional Tucker approximation using Chebyshev interpolation. SIAM J. Sci. Comput. 43(3), A2190–A2210 (2021)

    CrossRef  MATH  MathSciNet  Google Scholar 

  30. Dong, Y., Martinsson, P.G.: Simpler is better: a comparative study of randomized algorithms for computing the CUR decomposition (2021). Preprint, arXiv:2104.05877

    Google Scholar 

  31. Engquist, B., Ying, L.: Fast directional multilevel algorithms for oscillatory kernels. SIAM J. Sci. Comput. 29(4), 1710–1737 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  32. Engquist, B., Ying, L., et al.: A fast directional algorithm for high frequency acoustic scattering in two dimensions. Commun. Math. Sci. 7(2), 327–345 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  33. Engquist, B., Zhao, H.: Approximate separability of the Green’s function of the Helmholtz equation in the high frequency limit. Commun. Pure Appl. Math. 71(11), 2220–2274 (2018)

    CrossRef  MATH  MathSciNet  Google Scholar 

  34. Gillman, A., Young, P., Martinsson, P.G.: A direct solver with \(\mathcal {O}(N)\) complexity for integral equations on one-dimensional domains. Front. Math. China 7(2), 217–247 (2012)

    Google Scholar 

  35. Gimbutas, Z., Greengard, L., Lu, L., Jeremy Magland, D.M., O’Neil, M., Rachh, M., Rokhlin, V.: FMM3D. Release 1.0.0, https://github.com/flatironinstitute/FMM3D

  36. Gopal, A., Martinsson, P.G.: An accelerated, high-order accurate direct solver for the Lippmann-Schwinger equation for acoustic scattering in the plane. Adv. Comput. Math. 48(4), 1–31 (2022)

    CrossRef  MATH  MathSciNet  Google Scholar 

  37. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of \(\mathcal {H}\)-matrices. Computing 70(4), 295–334 (2003)

    Google Scholar 

  38. Greengard, P.: On generalized prolate spheroidal functions. Ph.D. Thesis, Yale University (2019)

    Google Scholar 

  39. Greengard, L., Gimbutas, Z.: FMMLIB2D (2021). https://github.com/zgimbutas/fmmlib2d, Version 1.2.3

  40. Greengard, L., Gueyffier, D., Martinsson, P.G., Rokhlin, V.: Fast direct solvers for integral equations in complex three-dimensional domains. Acta Numer. 1–33 (2009)

    Google Scholar 

  41. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  42. Greengard, L., Rokhlin, V.: On the numerical solution of two-point boundary value problems. Commun. Pure Appl. Math. 44(4), 419–452 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  43. Guo, H., Liu, Y., Hu, J., Michielssen, E.: A butterfly-based direct integral-equation solver using hierarchical LU factorization for analyzing scattering from electrically large conducting objects. IEEE Trans. Antennas Propag. 65(9), 4742–4750 (2017)

    CrossRef  Google Scholar 

  44. Hackbusch, W.: A sparse matrix arithmetic based on \(\mathcal {H}\)-matrices. Part I: introduction to \(\mathcal {H}\)-matrices. Computing 62(2), 89–108 (1999)

    Google Scholar 

  45. Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis, vol. 49. Springer, Berlin/Heidelberg (2015)

    CrossRef  MATH  Google Scholar 

  46. Hackbusch, W., Khoromskij, B.N.: A sparse \(\mathcal {H}\)-matrix arithmetic. Part II: application to multi-dimensional problems. Computing 64(1), 21–47 (2000)

    Google Scholar 

  47. Hackbusch, W., Khoromskij, B., Sauter, S.A.: On \(\mathcal {H}^2\)-Matrices. Lectures on Applied Mathematics, pp. 9–29. Springer, Berlin/Heidelberg (2000)

    Google Scholar 

  48. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  49. Hao, S., Barnett, A.H., Martinsson, P.G., Young, P.: High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane. Adv. Comput. Math. 40(1), 245–272 (2014)

    CrossRef  MATH  MathSciNet  Google Scholar 

  50. Hashemi, B., Trefethen, L.N.: Chebfun in three dimensions. SIAM J. Sci. Comput. 39(5), C341–C363 (2017)

    CrossRef  MATH  MathSciNet  Google Scholar 

  51. Ho, K., Greengard, L.: A fast direct solver for structured linear systems by recursive skeletonization. SIAM J. Sci. Comput. 34(5), A2507–A2532 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  52. Ho, K., Greengard, L.: A fast semi-direct least squares algorithm for hierarchically block separable matrices. SIAM J. Matrix Anal. Appl. 35(2), 725–748 (2014)

    CrossRef  MATH  MathSciNet  Google Scholar 

  53. Ho, K., Ying, L.: Hierarchical interpolative factorization for elliptic operators: integral equations. Commun. Pure Appl. Math. 69, 1314–1353 (2016)

    CrossRef  MATH  MathSciNet  Google Scholar 

  54. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  55. Kong, W.Y., Bremer, J., Rokhlin, V.: An adaptive fast direct solver for boundary integral equations in two dimensions. Appl. Comput. Harmon. Anal. 31(3), 346–369 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  56. Kress, R.: Linear Integral Equations. Applied Mathematical Sciences, vol. 82, 3rd edn. Springer, New York (2014)

    Google Scholar 

  57. Martinsson, P.G.: Fast Direct Solvers for Elliptic PDEs. CBMS–NSF Conference Series, vol. 96. SIAM (2019)

    Google Scholar 

  58. Martinsson, P.G., Rokhlin, V.: A fast direct solver for boundary integral equations in two dimensions. J. Comput. Phys. 205(1), 1–23 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  59. Martinsson, P.G., Rokhlin, V.: A fast direct solver for scattering problems involving elongated structures. J. Comput. Phys. 221(1), 288–302 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  60. Martinsson, P.G., Tropp, J.A.: Randomized numerical linear algebra: foundations and algorithms. Acta Numer. 29, 403–572 (2020). https://doi.org/10.1017/S0962492920000021

    CrossRef  MATH  MathSciNet  Google Scholar 

  61. Martinsson, P.G., Rokhlin, V., Tygert, M.: A randomized algorithm for the decomposition of matrices. Appl. Comput. Harmon. Anal. 30(1), 47–68 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  62. Michielssen, E., Boag, A., Chew, W.C.: Scattering from elongated objects: direct solution in \({O}({N}\log ^{2}{N})\) operations. IEE Proc. Microwaves Antennas Propag. 143(4), 277–283 (1996)

    Google Scholar 

  63. Minden, V., Ho, K., Damle, A., Ying, L.: A recursive skeletonization factorization based on strong admissibility. Multiscale Model. Simul. 15(2), 768–796 (2017)

    CrossRef  MATH  MathSciNet  Google Scholar 

  64. Osipov, A., Rokhlin, V., Xiao, H., et al.: Prolate Spheroidal Wave Functions of Order Zero. Springer Series in Applied Mathematical Science, vol. 187 (2013)

    Google Scholar 

  65. Rokhlin, V.: Sparse diagonal forms for translation operators for the Helmholtz equation in two dimensions. Appl. Comput. Harmon. Anal.5(1), 36–67 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  66. Shkolnisky, Y.: Prolate spheroidal wave functions on a disc–integration and approximation of two-dimensional bandlimited functions. Appl. Comput. Harmon. Anal. 22(2), 235–256 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  67. Slepian, D.: Prolate spheroidal wave functions, fourier analysis and uncertainty IV. Bell Syst. Tech. J. 43(6), 3009–3057 (1964)

    CrossRef  MATH  Google Scholar 

  68. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, fourier analysis and uncertainty I. Bell Syst. Tech. J. 40(1), 43–63 (1961)

    CrossRef  MATH  MathSciNet  Google Scholar 

  69. Starr, P., Rokhlin, V.: On the numerical solution of two-point boundary value problems II. Commun. Pure Appl. Math. 47(8), 1117–1159 (1994)

    CrossRef  MATH  MathSciNet  Google Scholar 

  70. Toraldo Di Francia, G.: Degrees of freedom of an image. J. Opt. Soc. Am. 59(7), 799–804 (1969)

    CrossRef  Google Scholar 

  71. Tropp, J.A., Yurtsever, A., Udell, M., Cevher, V.: Fixed-rank approximation of a positive-semidefinite matrix from streaming data. Adv. Neural Inf. Proces. Syst. 30 (2017)

    Google Scholar 

  72. Voronin, S., Martinsson, P.G.: Efficient algorithms for CUR and interpolative matrix decompositions. Adv. Comput. Math. 43(3), 495–516 (2017)

    CrossRef  MATH  MathSciNet  Google Scholar 

  73. Wiscombe, W.J.: Improved Mie scattering algorithms. Appl. Opt. 19(9), 1505–1509 (1980)

    CrossRef  Google Scholar 

  74. Woolfe, F., Liberty, E., Rokhlin, V., Tygert, M.: A fast randomized algorithm for the approximation of matrices. Appl. Comput. Harmon. Anal. 25(3), 335–366 (2008)

    Google Scholar 

  75. Wu, B.: ZetaTrap2D. https://github.com/bobbielf2/ZetaTrap2D (2021)

  76. Wu, B.: ZetaTrap3D. https://github.com/bobbielf2/ZetaTrap3D (2022)

  77. Wu, B., Martinsson, P.G.: Corrected trapezoidal rules for boundary integral equations in three dimensions. Numer. Math. 149(4), 1025–1071 (2021)

    CrossRef  MATH  MathSciNet  Google Scholar 

  78. Wu, B., Martinsson, P.G.: Zeta correction: a new approach to constructing corrected trapezoidal quadrature rules for singular integral operators. Adv. Comput. Math. 47(3), 1–21 (2021)

    CrossRef  MATH  MathSciNet  Google Scholar 

  79. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Fast algorithms for hierarchically semiseparable matrices. Numer. Linear Algebra Appl. 17(6), 953–976 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  80. Zhao, L., Barnett, A.: Robust and efficient solution of the drum problem via Nyström approximation of the Fredholm determinant. SIAM J. Numer. Anal. 53(4), 1984–2007 (2015)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Alex Barnett and Vladimir Rokhlin for valuable discussions about the topics under consideration. The work reported was supported by the Office of Naval Research (N00014-18-1-2354), by the National Science Foundation (DMS-1952735 and DMS-2012606), and by the Department of Energy ASCR (DE-SC0022251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per-Gunnar Martinsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gopal, A., Martinsson, PG. (2023). Broadband Recursive Skeletonization. In: Melenk, J.M., Perugia, I., Schöberl, J., Schwab, C. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1. Lecture Notes in Computational Science and Engineering, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-031-20432-6_2

Download citation