Skip to main content

Environmental Isotope Studies at the Plitvice Lakes

  • Chapter
  • First Online:
Plitvice Lakes

Part of the book series: Springer Water ((SPWA))

Abstract

For more than 40 years, isotope research of environmental compartments has been conducted at the Plitvice Lakes. Though it started with initial idea to radiocarbon date tufa, the emerged problems regarding tufa dating eventually led to isotope research of water and carbon cycles, dating of tufa and sediments by other isotopes, using sediment and tufa as natural archives of past climate and environmental conditions. Water from different compartments, precipitation, groundwater, surface and lake water were analyzed by oxygen (stable 18O) and hydrogen isotopes (stable 2H, radioactive 3H). Research have been conducted by carbon (stable 13C, radioactive 14C) isotopes in atmospheric CO2, terrestrial plants and soil, in dissolved inorganic carbon in groundwater and lake water and in aquatic plants, in tufa and in organic and inorganic fraction of lake sediments. Along with carbon isotopes (13C and 14C), 18O and 15 N were also used for analyses of the sediment carbonate and organic fraction, respectively. For dating of recent lake sediments 137Cs and 210Pb were used, while 14C and U/Th were used to date tufa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson EC, Libby WF (1951) World-wide distribution of natural radiocarbon. Phys Rev 81:64–69

    Article  ADS  CAS  Google Scholar 

  • Appleby PG, Oldfield F (1992) Application of lead-210 to sedimentation studies. In: Ivanovich M, Harman RS (ed) Uranium-series disequilibrium: applications to earth, marine, and environmental science. Oxford University Press

    Google Scholar 

  • Arnold JR, Libby F (1949) Age determination by radiocarbon content: checks with samples of known age. Science 678–680

    Google Scholar 

  • Babinka S (2007) Multi-tracer study of karst waters and lake sediments in Croatia and Bosnia-Herzegovina: Plitvice Lakes National Park and Bihać area. PhD thesis, Rheinischen Friedrich-Wilhelms-Universität, Bonn, Germany

    Google Scholar 

  • Barešić J (2005) Primjena tekućinskog scintilacijskog brojača u metodi datiranja radioaktivnim ugljikom 14C, (Application of liquid scintillation counter for radiocarbon dating), Master Thesis, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia, in Croatian

    Google Scholar 

  • Barešić J (2009) Primjena izotopnih i geokemijskih metoda u praćenju globalnih i lokalnih promjena u ekološkom sustavu Plitvička jezera (Application of isotopic and geochemical methods in monitoring of global and local changes in ecological system of Plitvice Lakes). PhD thesis, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia, in Croatian

    Google Scholar 

  • Barešić J, Horvatinčić N, Roller-Lutz Z (2011a) Spatial and seasonal variations in the stable C isotope composition of dissolved inorganic carbon and in physico-chemical water parameters in the Plitvice Lakes system. Isotopes Environ Health Stud 47:316–329

    Article  PubMed  Google Scholar 

  • Barešić J, Horvatinčić N, Vreča P et al (2011b) Distribution of authigenic and allogenic fractions in recent lake sediment: isotopic and chemical compositions. Acta Carsologica 40(2):293–305. https://doi.org/10.3986/ac.v40i2.14

    Article  Google Scholar 

  • Biondić B, Biondić R, Meaški H (2010) The conceptual hydrogeological model of the Plitvice Lakes. Geologia Croatica 63(2):195–206

    Article  Google Scholar 

  • Coplen TB (2011) Guidelines and recommended terms for expression of stable isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560. https://doi.org/10.1002/rcm.5129

    Article  ADS  CAS  PubMed  Google Scholar 

  • Craig H (1961) Isotope variations in meteoric waters. Science 133:1702–1703

    Article  ADS  CAS  PubMed  Google Scholar 

  • Crawford J, Hughes CE, Lykoudis S (2014) Alternative least squares methods for determining the meteoric waterline, demonstrated using GNIP data. J Hydrol 519:2331–2340. https://doi.org/10.1016/j.jhydrol.2014.10.033

    Article  CAS  Google Scholar 

  • Cukrov N, Kwoka Ž, Lojen S et al (2011) Raspodjela metala i stabilnih izotopa O i C u laminarnoj sedri s Plitvičkih jezera (Distributions of metals and stable isotope (O & C) ratios in laminar tufa from the Plitvice lakes). In: Šutić B (ed) Proceedings, Plitvička jezera: JU, pp 288–294. ISBN 978-953-96146-4-3, in Croatian

    Google Scholar 

  • Čalić R (1996) Metoda određivanja starosti s 230Th/234U i njezina primjena na karbonatne sedimente (230Th/234U dating method and its application on carbonate sediments). Master Thesis, Faculty of Science, University of Zagreb, Zagreb, Croatia, in Croatian

    Google Scholar 

  • Dansgaard W (1961) The isotope composition of natural waters. Medd Grønland 165:120

    Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  ADS  Google Scholar 

  • Felja I (2009) Procesi sedrenja na Plitvičkim jezerima i primjena 14C metode (Processes of tufa development on the Plitvice Lakes and application of the 14C method). Graduate Thesis, Faculty of Science, University of Zagreb, Zagreb, Croatia, in Croatian

    Google Scholar 

  • Francey RJ, Allison C, Etheridge D et al (1999) A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B 51:170–193

    Article  ADS  Google Scholar 

  • Gat JR, Carmi I (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75:3039–3048

    Google Scholar 

  • Gat JR, Shemesh A, Tziperman E et al (1996) The stable isotope composition of waters of the eastern Mediterranean Sea. J Geophys Res 101:6441–6451. https://doi.org/10.1029/95JC02829

    Article  ADS  CAS  Google Scholar 

  • Geyh MA (1973) Basic studies in hydrology and 14C and 3H measurements. In: Armstrong JE (ed) General Proceedings of the 24th International Geological Congress, The 24th International Geological Congress, Montreal, QC Canada, August 1972, vol 11, pp 227–234, Montreal, QC, Canada

    Google Scholar 

  • Graven H, Allison CE, Etheridge DM et al (2017) Compiled records of carbon isotopes in atmospheric CO2 for historical simulations in CMIP6. Geosci Model Dev 10:4405–4417. https://doi.org/10.5194/gmd-10-4405-2017

    Article  ADS  CAS  Google Scholar 

  • Hammer S, Levin I (2017) Monthly mean atmospheric Δ14CO2 at Jungfraujoch and Schauinsland from 1986 to 2016. https://doi.org/10.11588/data/10100, heiDATA, V2

  • Horvatinčić N (1985) Određivanje starosti sedre na području Plitvičkih jezera metodom radioaktivnog ugljika 14C (Dating of tufa by radiocarbon method). PhD thesis, Faculty of Science, University of Zagreb, Zagreb, Croatia, in Croatian

    Google Scholar 

  • Horvatinčić N, Srdoč D, Šilar J et al (1989) Comparison of the 14C Activity of Groundwater and Recent Tufa from Karst Areas in Yugoslavia and Czechoslovakia. Radiocarbon 31:884–892

    Article  Google Scholar 

  • Horvatinčić N, Čalić R, Geyh M (2000) Interglacial growth of tufa in Croatia. Quat Res 53:185–195

    Article  Google Scholar 

  • Horvatinčić N, Krajcar Bronić I, Obelić B (2003) Differences in the 14C age, δ13C and δ18O of Holocene tufa and speleothem in the dinaric karst. Pal Pal Pal 193:139–157

    Google Scholar 

  • Horvatinčić N, Barešić J, Krajcar Bronić I et al (2004) Measurement of low 14C activites in a liquid scintillation counter in the Zagreb radiocarbon laboratory. Radiocarbon 46(1):105–116

    Article  Google Scholar 

  • Horvatinčić N, Barešić J, Babinka S et al (2008) Towards a deeper understanding how carbonate isotopes (14C, 13C, 18O) reflect environmental changes: a study with recent 210Pb-dated sediments of the Plitvice Lakes, Croatia. Radiocarbon 50:233–253

    Article  Google Scholar 

  • Horvatinčić N, Sironić A, Barešić J et al (2014) Isotope analyses of the lake sediments in the Plitvice Lakes. Croatia. Cent Eur J Phys 12(10):707–713. https://doi.org/10.2478/s11534-014-0490-7

    Article  CAS  Google Scholar 

  • Horvatinčić N, Sironić A, Barešić J et al (2018) Mineralogical, organic and isotopic composition as palaeoenvironmental records in the lake sediments of two lakes, the Plitvice Lakes, Croatia. Quat Int 494:300–313. https://doi.org/10.1016/j.quaint.2017.01.022

    Article  Google Scholar 

  • Hou X (2018) Liquid scintillation counting for determination of radionuclides in environmental and nuclear application. J Radioanal Nucl Chem 318:1597–1628

    Article  CAS  Google Scholar 

  • Hua Q, Barbetti M, Zoppi U et al (2004) Radiocarbon in tropical tree rings during the Little Ice Age. Nucl Instrum Meth B 223–224:489–494. https://doi.org/10.1016/j.nimb.2004.04.092

    Article  ADS  CAS  Google Scholar 

  • Hua Q, Barbetti M, Rakowski A (2013) Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):2059–2072. https://doi.org/10.2458/azu_js_rc.v55i2.16177

  • Hughes CE, Crawford J (2012) A new precipitation weighted method for determining the meteoric water line for hydrological applications demonstrated using Australian and global GNIP data. J Hydrol 464:344–351. https://doi.org/10.1016/j.jhydrol.2012.07.029

    Article  CAS  Google Scholar 

  • Ivanovich M, Harmon RS (eds) (1982) Uranium series disequilibrium: applications to environmental problems. Clarendon Press, Oxford

    Google Scholar 

  • Klaminder J, Appleby P, Crook P et al (2012) Post-deposition diffusion of 137Cs in lake sediment: implications for radiocaesium dating. Sedimentology 59:2259–2267. https://doi.org/10.1111/j.1365-3091.2012.01343.x

    Article  ADS  CAS  Google Scholar 

  • Krajcar Bronić I, Horvatinčić N, Srdoč D et al (1986) On the initial 14C activity in Karst aquifers with short mean residence time. Radiocarbon 28:436–440

    Google Scholar 

  • Krajcar Bronić I, Horvatinčić N, Srdoč D et al (1992) Experimental determination of the 14C initial activity of calcareous deposits. Radiocarbon 34:593–601

    Article  Google Scholar 

  • Krajcar Bronić I, Horvatinčić N, Obelić B (1998) Two decades of environmental isotope record in Croatia: reconstruction of the past and prediction of future levels. Radiocarbon 40:399–416

    Article  Google Scholar 

  • Krajcar Bronić I, Vreča P, Horvatinčić N et al (2006) Distribution of hydrogen, oxygen and carbon isotopes in the atmosphere of Croatia and Slovenia. Arch Ind Hyg Toxicol 57:23–29

    Google Scholar 

  • Krajcar Bronić I, Obelić B, Horvatinčić N et al (2010) Radiocarbon application in environmental science and archaeology in Croatia. Nucl Instrum Meth Phys A 619(1–3):491–496. https://doi.org/10.1016/j.nima.2009.11.032

    Article  ADS  CAS  Google Scholar 

  • Krajcar Bronić I, Barešić J, Sironić A et al (2020a) Isotope composition of precipitation, groundwater and surface and lake waters from the Plitvice Lakes, Croatia. Water 12(9):2414. https://doi.org/10.3390/w12092414

  • Krajcar Bronić I, Barešić J, Borković D et al (2020b) Long-term isotope records of precipitation in Zagreb, Croatia. Water 12(1):226. https://doi.org/10.3390/w12010226

  • Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev 23:811–831

    Article  ADS  Google Scholar 

  • Levin I, Kromer B, Schoch-Fischer H et al (1985) 25 years of tropospheric 14C observations in central Europe. Radiocarbon 27(1):1–19

    Article  CAS  Google Scholar 

  • Libby WF, Anderson EC, Arnold JR (1949) Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science 109:227–228

    Article  ADS  CAS  PubMed  Google Scholar 

  • Libby WF (1955) Radiocarbon dating. University of Chicago Press, Chicago

    Google Scholar 

  • Lucas L, Unterweger MP (2000) Comprehensive review and critical evaluation of the half-life of tritium. J Res Natl Inst Stand Technol 105:541–549. https://doi.org/10.6028/jres.105.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Małoszewski P, Rauert W, Stichler W et al (1983) Application of flow models in an alpine catchment area using tritium and deuterium data. J Hydrol 66:319–330

    Article  Google Scholar 

  • Marčenko E, Srdoč D, Golubić S et al (1989) Carbon uptake in aquatic plants deduced from their natural 13C and 14C content. Radiocarbon 31:785–794

    Article  Google Scholar 

  • Mook WG (2001) Environmental isotopes in the hydrological cycle, principles and applications. vols I, IV and V; Technical Documents in Hydrology No. 39; IAEA-UNESCO: Paris, France

    Google Scholar 

  • Nydal R, Lövseth K (1983) Tracing bomb 14C in the atmosphere 1962–1980. J Geophys Res 88(6):3621–3642

    Article  ADS  CAS  Google Scholar 

  • Pedley M (2009) Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology 56(2998):221–246

    Article  ADS  Google Scholar 

  • Pennington W, Tutin TG, Cambray RS et al (1973) Observations on Lake Sediments using Fallout 137Cs as a Tracer. Nature 242:324–326

    Article  ADS  CAS  PubMed  Google Scholar 

  • Robbins JA, Edgington DN (1975) Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim Cosmochim Acta 39:285–304

    Article  ADS  CAS  Google Scholar 

  • Robinson D (2001) N as an integrator of the nitrogen cycle. Trends Ecol Evol 16(3):153–162

    Article  CAS  PubMed  Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. Geophys Monogr 78:1–36. https://doi.org/10.1029/GM078

    Article  ADS  Google Scholar 

  • Rubinić J, Zwicker G, Dragičević N (2008) Contribution to knowing Plitvice Lakes hydrology—lake water level variation dynamics and significant changes. In: Proceedings of meeting Hydrological measurements and data processing (“Hidrološka mjerenja i obrada podataka”) NP Plitvice Lakes, 26–28 Nov 2008, pp 207–230, in Croatian, English abstract

    Google Scholar 

  • Schwarcz HP (1989) Uranium series dating of Quaternary deposits. Quat Int 1:7–17, ISSN 1040–6182, https://doi.org/10.1016/1040-6182(89)90005-0

  • Sironić A (2012) 14C u prirodnom ciklusu ugljika u krškom sustavu mjeren akceleratorskom masenom spektrometrijom (14C in natural carbon cycle of karst system measured by accelerator mass spectrometry). PhD thesis, Faculty of Science, University of Zagreb, Zagreb, Croatia, in Croatian

    Google Scholar 

  • Sironić A, Krajcar Bronić I, Horvatinčić N et al (2013) Status report on the Zagreb radiocarbon laboratory—AMS and LSC results of VIRI intercomparison samples. Nucl Instr Meth Phys B 294:185–188. https://doi.org/10.1016/j.nimb.2012.01.048

    Article  ADS  CAS  Google Scholar 

  • Sironić A, Horvatinčić N, Barešić J (2015) Carbon isotope fractionation during photosynthesis in submerged moss and aquatic plants. In: Krajcar Bronić I, Horvatinčić N, Obelić B (eds) Book of Abstracts–ESIR Isotope Workshop XIII, Zagreb, Ruđer Bošković Institute, p 60

    Google Scholar 

  • Sironić A, Barešić J, Horvatinčić N et al (2017) Changes in the geochemical parameters of karst lakes over the past three decades—The case of Plitvice Lakes, Croatia. Appl Geochem 78:12–22. https://doi.org/10.1016/j.apgeochem.2016.11.013

    Article  ADS  CAS  Google Scholar 

  • Sironić A, Krajcar Bronić I, Horvatinčić N et al (2020) Carbon isotopes in dissolved inorganic carbon as tracers of carbon sources in karst waters of the Plitvice Lakes, Croatia. In: Bojar A, Pelc A, Lecuyer C (eds), Stable isotope studies of the water cycle and terrestrial environments. Geological Society, London, Special Publications SP507-2020-49. doi:https://doi.org/10.1144/SP507-2020-49

  • Sironić A, Alegro A, Horvatinčić N et al (2021) Isotope fractionation in Karst Aquatic Mosses. Isotopes Environ Health Stud 57:142–165. https://doi.org/10.1080/10256016.2020.1852235

    Article  CAS  PubMed  Google Scholar 

  • Sliepčević A, Planinić J (1974) Određivanje starosti sekundarnih vapnenačkih taloga metodom radioaktivnog ugljika. Naše Jame 15:71–75 In Croatian

    Google Scholar 

  • Srdoč D, Breyer B, Sliepčević A (1971) Ruđer Bošković Institute Radiocarbon Measurements I. Radiocarbon 13:135–140

    Article  Google Scholar 

  • Srdoč D, Obelić B, Horvatinčić N et al (1979) Measurement of the 14C activity of the ANU sucrose secondary standard by means of the proportional counter technique. Radiocarbon 21(3):321–328

    Article  Google Scholar 

  • Srdoč D, Obelić B, Horvatinčić N et al (1980) Radiocarbon dating of calcareous tufa; how reliable data can we expect? Radiocarbon 22:858–862

    Google Scholar 

  • Srdoč D, Horvatinčić N, Obelić B et al (1983) Radiocarbon dating of tufa in palaeoclimatic studies. Radiocarbon 25:421–428

    Article  Google Scholar 

  • Srdoč D, Horvatinčić D, Obelić D et al (1985a) Procesi taloženja kalcita u krškim vodama s posebnim osvrtom na Plitvička jezera (Calcite Deposition Processes in Karstwaters with Special Emphasis on the Plitvice Lakes, Yugoslavia) (English Abstract). Carsus Iugoslaviae (krš Jugoslavije) 11(4–6):101–204

    Google Scholar 

  • Srdoč D, Obelić B, Horvatinčić N et al (1985b) Radiocarbon dating and Pollen analyses of two Peat Bogs in the Plitvice National Park Area. Acta Bot Croat 44:41–46

    Google Scholar 

  • Srdoč D (1986) The response of hydrological systems to the variations of the 14C activity of the atmosphere. Nuclear Instrum Meth Phys Res B 17:545–549

    Google Scholar 

  • Srdoč D, Krajcar Bronić I (1986) The application of stable and radioactive isotopes in karst water research. Naš Krš 12:37–47

    Google Scholar 

  • Srdoč D, Horvatinčić N, Obelić B et al (1986a) The effects of contamination of calcareous sediments on their radiocarbon age. Radiocarbon 28:510–514

    Google Scholar 

  • Srdoč D, Krajcar Bronić I, Horvatinčić N et al (1986b) The increase of 14C activity of dissolved inorganic carbon along the river course. Radiocarbon 28:515–521

    Google Scholar 

  • Srdoč D, Obelić B, Horvatinčić N et al (1986c) Radiocarbon dating of lake sediments from two Karstic Lakes in Yugoslavia. Radiocarbon 28:495–502

    Google Scholar 

  • Srdoč D, Horvatinčić N, Ahel M et al (1992) Anthropogenic influence on the 14C activity of recent lake sediment. A case study. Radiocarbon 34:585–592

    Google Scholar 

  • Srdoč D, Osmond J, Horvatinčić N et al (1994) Radiocarbon and uranium-series dating of the Plitvice Lakes Travertines. Radiocarbon 36(2):203–219

    Google Scholar 

  • Suckow A, Gäbler HE (1997) Radiometric dating and heavy metal content of a recent sediment core from Lake Trenntsee in Northeastern Germany. Isotopes Environ Health Stud 33:367–376

    Article  CAS  Google Scholar 

  • Tiwari M, Singh AK, Sinha DK (2015) Chapter 3 - Stable Isotopes: tools for understanding past climatic conditions and their applications in chemostratigraphy. In: Ramkumar M (ed) Chemostratigraphy. Elsevier, pp 65–92. ISBN 9780124199682. https://doi.org/10.1016/B978-0-12-419968-2.00003-0.

  • Vreča P, Krajcar Bronić I, Horvatinčić N et al (2006) Isotopic characteristics of precipitation in Slovenia and Croatia: comparison of continental and maritime stations. J Hydrol 330:457–469. https://doi.org/10.1016/j.jhydrol.2006.04.005

  • Wood R (2015) From revolution to convention: the past, present and future of radiocarbon dating. J Archaeol Sci 56:61–72

    Article  CAS  Google Scholar 

  • Yehdegho B, Biondić B, Biondić R et al (2016) Hydrogeological study on the sustainable use of the water resources in the Plitvice Lakes National Park, Croatia. Beiträge zur Hydrogeologie 60:31–60. ISSN 0376–4826

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to former Ruđer Bošković Institute laboratory staff members Dušan Srdoč, Adela Sliepčević, Bogomil Obelić, Nada Horvatinčić, Elvira Hernaus, and Božica Mustač and the present technician Anita Rajtarić and to the staff of the “Dr. Ivo Pevalek” Scientific Station of the Plitvice Lakes who took part in sample and data collection. We appreciate also indispensable contributions of numerous colleagues from different institutions who participated in various projects.

The work was partially funded by the Croatian Science Foundation project HRZZ-IP-2013-11-1623 Reconstruction of the Quaternary environment in Croatia using isotope methods (REQUENCRIM), 2014–2018, and projects with the Plitvice Lakes National Park “Influence of environmental and climate changes on the biologically induced calcite precipitation in form of tufa or lake sediment at the Plitvice Lakes” 2011–2014, and “An investigation of the influence of forest ecosystems of the National Park Plitvice Lakes on the quality of water and lakes” 2003–2006. Earlier research was funded through project with Ministry of Science and Education of the Republic of Croatia, and projects of the European Commission ANTROPOL.PROT, SOWAEUMED and STRAVAL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreja Sironić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sironić, A., Krajcar Bronić, I., Barešić, J. (2023). Environmental Isotope Studies at the Plitvice Lakes. In: Miliša, M., Ivković, M. (eds) Plitvice Lakes. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-20378-7_4

Download citation

Publish with us

Policies and ethics