Skip to main content

Parametric Tuning of Natural Frequencies of Tuning Fork Gyroscope

  • Conference paper
  • First Online:
Microactuators, Microsensors and Micromechanisms (MAMM 2022)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 126))

Included in the following conference series:

  • 670 Accesses

Abstract

The sequence of mode shapes play a vital role in designing a dual mass tuning fork gyroscope (TFG). To avoid loss of energy, a desired separation of frequencies between operating modes (out-of-phase drive and sense) and parasitic modes is required. Hence, regulation of mode shapes is an essential criterion in TFG design. In the present work, the influence of several crucial parameters such as coupling mechanisms and dimensions of folded beams on the in-plane frequencies are studied numerically by using finite element based COMSOL software.

Supported by Defence Research and Development Organisation, New Delhi, India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yazdi, N., Ayazi, F., Najafi, K.: Micromachined inertial sensors. Proc. IEEE 86(8), 1640–1659 (1998)

    Article  Google Scholar 

  2. Xia, D., Yu, C., Sensors, L.K.: undefined,: the development of micromachined gyroscope structure and circuitry technology. Mdpi. Com. 14, 1394–1473 (2014)

    Google Scholar 

  3. Söderkvist, J.: Micromachined gyroscopes. Sens. Actuators A Phys. 43, 65–71 (1994)

    Article  Google Scholar 

  4. Passaro, V.M.N., Cuccovillo, A., Vaiani, L., De Carlo, M., Campanella, C.E.: Gyroscope technology and applications: a review in the industrial perspective. Sensors 17, 2284 (2017)

    Article  Google Scholar 

  5. Ma, W., Lin, Y., Liu, S., Zheng, X., Jin, Z.: A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique. J. Micromech. Microeng. Iopscience. Iop. Org. 27(2) (2016)

    Google Scholar 

  6. Pang, G., Liu, H.: Evaluation of a low-cost MEMS accelerometer for distance measurement. J. Intell. Robot. Syst. Theory Appl. 30, 249–265 (2001)

    Article  MATH  Google Scholar 

  7. Wu, J., Zhou, Z., Fourati, H., Cheng, Y.: A super fast attitude determination algorithm for consumer-level accelerometer and magnetometer. IEEE Trans. Consum. Electron. 64(3), 375–381 (2018)

    Article  Google Scholar 

  8. Nguyen, M.N., Ha, N.S., Nguyen, L.Q., Chu, H.M., Vu, H.N.: Z-axis micromachined tuning fork gyroscope with low air damping. Micromachines 8, 42 (2017)

    Article  Google Scholar 

  9. Yang, C., Li, H.: Digital control system for the MEMS tuning fork gyroscope based on synchronous integral demodulator. IEEE Sens. J. 15(10), 5755–5764 (2015)

    Article  Google Scholar 

  10. Guan, Y., Gao, S., Liu, H., Jin, L., Niu, S.: Design and vibration sensitivity analysis of a MEMS tuning fork gyroscope with an anchored diamond coupling mechanism. Sensors 16, 468 (2016)

    Article  Google Scholar 

  11. Prikhodko, I., Zotov, S., Trusov, A., Shkel, A.M.: Foucault pendulum on a chip: rate integrating silicon MEMS gyroscope. Elsevier. 177(2012), 67–78 (2012)

    Google Scholar 

  12. Tatar, E., Mukherjee, T., Fedder, G.K.: Stress effects and compensation of bias drift in a MEMS vibratory-rate gyroscope. J. Microelectromech. Syst. 26(3), 569–579

    Google Scholar 

  13. Park, B., Han, K., Lee, S., Yu, M.-J.: Analysis of compensation for a g-sensitivity scale-factor error for a MEMS vibratory gyroscope. Iopscience. Iop. Org 25(11), 115006 (2015)

    Google Scholar 

  14. Sonmezoglu, S., Alper, S., Akin, T.: An automatically mode-matched MEMS gyroscope with wide and tunable bandwidth. Ieeexplore. Ieee, Org (2014)

    Book  Google Scholar 

  15. Zhou, X., Xiao, D., Wu, X., Wu, Y., Hou, Z., He, K., Li, Q.: Stiffness-mass decoupled silicon disk resonator for high resolution gyroscopic application with long decay time constant (8.695 s). Appl. Phys. Lett. 109 (2016)

    Google Scholar 

  16. Guan, Y., Gao, S., Jin, L., Cao, L.: Design and vibration sensitivity of a MEMS tuning fork gyroscope with anchored coupling mechanism. Microsyst. Technol. 22, 247–254

    Google Scholar 

  17. Nusbaum, U., Rusnak, I., Klein, I.: Angular accelerometer-based inertial navigation system. Navigation. 66, 681–693 (2019)

    Article  Google Scholar 

  18. He, Q., Zeng, C., He, X., Xu, X., Lin, Z.: Measurement, undefined 2018, Calibrating accelerometers for space-stable inertial navigation systems at system level. Elsevier

    Google Scholar 

  19. El-Sheimy, N., Youssef, A.: Inertial sensors technologies for navigation applications: state of the art and future trends. Satell. Navig. 1 (2020)

    Google Scholar 

  20. Petritoli, E., Leccese, F., Leccese, M.: Inertial navigation systems for UAV: Uncertainty and error measurements. Ieeexplore. IEEE, Org (2019)

    Google Scholar 

  21. Handtmann, M., Aigner, R., Meckes, A., Wachutka, G.K.M.: Sensitivity enhancement of MEMS inertial sensors using negative springs and active control. Sens. Actuators A Phys. 97–98, 153–160 (2002)

    Article  Google Scholar 

  22. Masu, K., Machida, K., Yamane, D., Ito, H., Ishihara, N., Chang, T.-F.M., Sone, M., Shigeyama, R., Ogata, T., Miyake, Y.: (Invited) CMOS-MEMS based microgravity sensor and its application. ECS Trans. 97, 91–108 (2020)

    Article  Google Scholar 

  23. Gabrielson, T.G.: Mechanical-thermal noise in micromachined acoustic and vibration sensors. Ieeexplore. IEEE Trans. Electronic, Dev (1993)

    Book  Google Scholar 

  24. Cao, L., Li, J., Liu, X., Sun, F.Y.: Research on an anchor point lever beam coupling type tuning fork micro-gyroscope. Int. J. Precis. Eng. Manuf. 21, 1099–1111 (2020)

    Article  Google Scholar 

  25. Li, Z., Gao, S., Jin, L., Liu, H., Guan, Y., Peng, S.: Design and mechanical sensitivity analysis of a MEMS tuning fork gyroscope with an anchored leverage mechanism. Sensors (Basel). 19(16), 3455 (2019)

    Article  Google Scholar 

  26. Bukhari, S.A.R., Saleem, M.M., Hamza, A., Bazaz, S.A.: A novel design of high resolution MEMS gyroscope using mode-localization in weakly coupled resonators. IEEE Access 9, 157597–157608 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge DRDO, New Delhi, India for funding the research work through the grant number DRDO/./IITHRC-011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesha Chandra Dash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chandra Dash, R., Tirupathi, R., Krishna Menon, P., Pandey, A.K. (2023). Parametric Tuning of Natural Frequencies of Tuning Fork Gyroscope. In: Pandey, A.K., Pal, P., Nagahanumaiah, Zentner, L. (eds) Microactuators, Microsensors and Micromechanisms. MAMM 2022. Mechanisms and Machine Science, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-031-20353-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20353-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20352-7

  • Online ISBN: 978-3-031-20353-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics