Skip to main content

Lymphoid and Hematopoietic Systems (Lymph Nodes, Thymus, Spleen, Bone Marrow)

  • Chapter
  • First Online:
Normal Cytology

Abstract

The hematolymphoid system plays primary roles in oxygen transport, hemostasis, and immunity. The primary cell types are divided into myeloid and lymphoid lineages. The myeloid lineage includes erythrocytes, granulocytes, monocytes/histiocytes, dendritic cells, mast cells, and megakaryocytes/platelets, whereas the lymphoid lineage includes T cells, NK cells, and B cells/plasma cells. After birth, hematopoiesis primarily occurs in bone marrow. After migrating from marrow, T lymphoid progenitors mature in the thymus following T cell receptor selection. Lymph nodes and spleen serve as the sites of adaptive immune response during which further lymphoid differentiation can occur. Therefore, bone marrow and thymus are designated as primary lymphoid organs, whereas lymph node and spleen are secondary lymphoid organs. This chapter takes a function-and-form approach to discuss the cytomorphologic features of the cellular constituents in the hematolymphoid organ systems and the utility of cytologic evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campo E, Jaffe ES, Harris NL. Normal lymphoid organs and tissues. In: Jaffe ES, Arber DA, Campo E, Harris NL, Quintanilla-Martinez L, editors. Hematopathology. 2nd ed. Philadelphia, PA: Elsevier; 2011. p. 97–117.

    Chapter  Google Scholar 

  2. Murphy K, Weaver C. The humoral immune response. In: Murphy K, Weaver C, editors. Janeway’s immunobiology. 9th ed. New York, NY: Garland Science/Taylor and Francis; 2017. p. 406–13.

    Google Scholar 

  3. De Silva NS, Klein U. Dynamics of B cells in germinal centres. Nat Rev Immunol. 2015;15(3):137–48.

    Article  Google Scholar 

  4. Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. 2012;30:429–57.

    Article  CAS  Google Scholar 

  5. Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KGC, Dörner T, et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol. 2006;6(10):741–50.

    Article  CAS  Google Scholar 

  6. Nasuti JF, Gupta PK, Baloch ZW. Diagnostic value and cost-effectiveness of on-site evaluation of fine-needle aspiration specimens: review of 5,688 cases. Diagn Cytopathol. 2002;27(1):1–4.

    Article  Google Scholar 

  7. Stewart CJR, Duncan JA, Farquharson M, Richmond J. Fine needle aspiration cytology diagnosis of malignant lymphoma and reactive lymphoid hyperplasia. J Clin Pathol. 1998;51(3):197–203.

    Article  CAS  Google Scholar 

  8. Hsu C, Leung BSY, Lau S-K, Sham JST, Choy D, Engzell U. Efficacy of fine-needle aspiration and sampling of lymph nodes in 1,484 Chinese patients. Diagn Cytopathol. 1990;6(3):154–9.

    Article  CAS  Google Scholar 

  9. Frederiksen JK, Sharma M, Casulo C, Burack WR. Systematic review of the effectiveness of fine-needle aspiration and/or core needle biopsy for subclassifying lymphoma. Arch Pathol Lab Med. 2015;139(2):245–51.

    Article  Google Scholar 

  10. Hsi ED, Schnitzer B. Chapter 9. Reactive lymphadenopathies. In: Jaffe ES, Arber DA, Campo E, Harris NL, Quintanilla-Martinez L, editors. Hematopathology. 2nd ed. Philadelphia, PA: Elsevier; 2017. p. 153–78.

    Google Scholar 

  11. Monaco SE, Khalbuss WE, Pantanowitz L. Benign non-infectious causes of lymphadenopathy: a review of cytomorphology and differential diagnosis. Diagn Cytopathol. 2012;40(10):925–38.

    Article  Google Scholar 

  12. DeMay RM. Lymph nodes. In: DeMay RM, editor. Practical principles of cytopathology. Chicago, IL: American Society for Clinical Pathology; 2007. p. 227–79, revised edition.

    Google Scholar 

  13. Wieczorek TJ, Wakely PE. Lymph nodes. In: Cibas E, Ducatman B, editors. Cytology diagnostic principles and clinical correlates. 5th ed. Philadelphia, PA: Elsevier; 2020. p. 379–424.

    Google Scholar 

  14. O’Dowd GJ, Frable WJ, Behm FG. Fine needle aspiration cytology of benign lymph node hyperplasias. Diagnostic significance of lymphohistiocytic aggregates. Acta Cytol. 1985;29(4):554–8.

    Google Scholar 

  15. Suh YK, Shabaik A, Meurer WT, Shin SS. Lymphoid cell aggregates: a useful clue in the fine-needle aspiration diagnosis of follicular lymphomas. Diagn Cytopathol. 1997;17(6):467–71.

    Article  CAS  Google Scholar 

  16. van Krieken JHJM, Orazi A. Spleen. In: Mills SE, editor. Histology for pathologists. 5th ed. Philadelphia, PA: Wolters Kluwer Health; 2020. p. 799–852.

    Google Scholar 

  17. Molina DK, DiMaio VJM. Normal organ weights in men: part II-the brain, lungs, liver, spleen, and kidneys. Am J Forensic Med Pathol. 2012;33(4):368–72.

    Article  Google Scholar 

  18. Molina DK, DiMaio VJM. Normal organ weights in women: Part II-The brain, lungs, liver, spleen, and kidneys. Am J Forensic Med Pathol. 2015;36(3):182–7.

    Article  Google Scholar 

  19. Steiniger BS. Human spleen microanatomy: why mice do not suffice. Immunology. 2015;145(3):334–46.

    Article  CAS  Google Scholar 

  20. Barone S, Baer MR, Sait SNJ, Lawrence D, Block AW, Wetzler M. Ultrasound-guided fine needle biopsy of the spleen: high clinical efficacy and low risk in a multicenter Italian study. Am J Hematol. 2001;67(2):93–9.

    Article  Google Scholar 

  21. Caraway NP, Fanning CV. Use of fine-needle aspiration biopsy in the evaluation of splenic lesions in a cancer center. Diagn Cytopathol. 1997;16(4):312–6.

    Article  CAS  Google Scholar 

  22. Gómez-Rubio M, López-Cano A, Rendón P, Muñoz-Benvenuty A, Macías M, Garre C, et al. Safety and diagnostic accuracy of percutaneous ultrasound-guided biopsy of the spleen: a multicenter study. J Clin Ultrasound. 2009;37(8):445–50.

    Article  Google Scholar 

  23. Kang M, Kalra N, Gulati M, Lal A, Kochhar R, Rajwanshi A. Image guided percutaneous splenic interventions. Eur J Radiol. 2007;64(1):140–6.

    Article  Google Scholar 

  24. Zeppa P, Vetrani A, Luciano L, Fulciniti F, Troncone G, Rotoli B, et al. Fine needle aspiration biopsy of the spleen: a useful procedure in the diagnosis of splenomegaly. Acta Cytol. 1994;38(3):299–309.

    CAS  Google Scholar 

  25. Varga I, Babala J, Kachlik D. Anatomic variations of the spleen: current state of terminology, classification, and embryological background. Surg Radiol Anat. 2018;40(1):21–9.

    Article  Google Scholar 

  26. Vikse J, Sanna B, Henry BM, Taterra D, Sanna S, Pękala PA, et al. The prevalence and morphometry of an accessory spleen: a meta-analysis and systematic review of 22,487 patients. Int J Surg. 2017;45:18–28.

    Article  Google Scholar 

  27. Bhutiani N, Egger ME, Doughtie CA, Burkardt ES, Scoggins CR, Martin RCG, et al. Intrapancreatic accessory spleen (IPAS): a single-institution experience and review of the literature. Am J Surg. 2017;213(4):816–20.

    Article  Google Scholar 

  28. Tatsas AD, Owens CL, Siddiqui MT, Hruban RH, Ali SZ. Fine-needle aspiration of intrapancreatic accessory spleen: cytomorphologic features and differential diagnosis. Cancer Cytopathol. 2012;120(4):261–8.

    Article  Google Scholar 

  29. Kim G, Morris J, Anand N, Depalma F, Greenwald B, Kim R, et al. Recognizing intrapancreatic accessory spleen via EUS: interobserver variability. Endosc Ultrasound. 2019;8(6):392–7.

    Article  Google Scholar 

  30. Hayman JA, Callahan JW, Herschtal A, Everitt S, Binns DS, Hicks RJ, et al. Distribution of proliferating bone marrow in adult cancer patients determined using FLT-PET imaging. Int J Radiat Oncol Biol Phys. 2011;79(3):847–52.

    Article  CAS  Google Scholar 

  31. Campbell BA, Callahan J, Bressel M, Simoens N, Everitt S, Hofman MS, et al. Distribution atlas of proliferating bone marrow in non-small cell lung cancer patients measured by FLT-PET/CT imaging, with potential applicability in radiation therapy planning. Int J Radiat Oncol Biol Phys. 2015;92(5):1035–43.

    Article  Google Scholar 

  32. Sender R, Milo R. The distribution of cellular turnover in the human body. Nat Med. 2021;27(1):45–8.

    Article  CAS  Google Scholar 

  33. Calvi LM, Link DC. The hematopoietic stem cell niche in homeostasis and disease. Blood. 2015;126(22):2443–51.

    Article  CAS  Google Scholar 

  34. Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: a human perspective. Cell Stem Cell. 2012;10(2):120–36.

    Article  CAS  Google Scholar 

  35. Hoggatt J, Kfoury Y, Scadden DT. Hematopoietic stem cell niche in health and disease. Annu Rev Pathol Mech Dis. 2016;11:555–81.

    Article  CAS  Google Scholar 

  36. Adams GB, Scadden DT. The hematopoietic stem cell in its place. Nat Immunol. 2006;7(4):333–7.

    Article  CAS  Google Scholar 

  37. Boulais PE, Frenette PS. Making sense of hematopoietic stem cell niches. Blood. 2015;125(17):2621–9.

    Article  CAS  Google Scholar 

  38. Höfer T, Rodewald HR. Differentiation-based model of hematopoietic stem cell functions and lineage pathways. Blood. 2018;132(11):1106–13.

    Article  Google Scholar 

  39. Ng AP, Alexander WS. Haematopoietic stem cells: past, present and future. Cell Death Discov. 2017;3:2–5.

    Article  Google Scholar 

  40. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2017. Revised 4th edition.

    Google Scholar 

  41. Hale LP. Histologic and molecular assessment of human thymus. Ann Diagn Pathol. 2004;8(1):50–60.

    Article  Google Scholar 

  42. Kendall MD, Johnson HR, Singh J. The weight of the human thymus gland at necropsy. J Anat. 1980;131(Pt 3):483–97.

    CAS  Google Scholar 

  43. Germain RN. t-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol. 2002;2(5):309–22.

    Article  CAS  Google Scholar 

  44. Takahama Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol. 2006;6(2):127–35.

    Article  CAS  Google Scholar 

  45. Laan M, Salumets A, Klein A, Reintamm K, Bichele R, Peterson H, et al. Post-aire medullary thymic epithelial cells and Hassall’s corpuscles as inducers of tonic pro-inflammatory microenvironment. Front Immunol. 2021;12:1–9.

    Article  Google Scholar 

  46. Flores KG, Li J, Sempowski GD, Haynes BF, Hale LP. Analysis of the human thymic perivascular space during aging. J Clin Invest. 1999;104(8):1031–9.

    Article  CAS  Google Scholar 

  47. Nuñez S, Moore C, Gao B, Rogers K, Hidalgo Y, Del Nido PJ, et al. The human thymus perivascular space is a functional niche for viral-specific plasma cells. Sci Immunol. 2016;1(6):139–48.

    Article  Google Scholar 

  48. Mori K, Itoi M, Tsukamoto N, Kubo H, Amagai T. The perivascular space as a path of hematopoietic progenitor cells and mature T cells between the blood circulation and the thymic parenchyma. Int Immunol. 2007;19(6):745–53.

    Article  CAS  Google Scholar 

  49. Goel D, Prayaga AK, Sundaram C, Raghunadharao D, Rajappa SJ, Rammurti S, et al. Utility of fine needle aspiration cytology in mediastinal lesions: a clinicopathologic study of 161 cases from a single institution. Acta Cytol. 2008;52(4):404–11.

    Article  Google Scholar 

  50. Adler OB, Rosenberger A, Peleg H. Fine-needle aspiration biopsy of mediastinal masses: evaluation of 136 experiences. AJR Am J Roentgenol. 1983;140(5):893–6.

    Article  CAS  Google Scholar 

  51. Marchevsky A, Marx A, Ströbel P, Suster S, Venuta F, Marino M, et al. Policies and reporting guidelines for small biopsy specimens of mediastinal masses. J Thorac Oncol. 2011;6(7 Suppl 3):S1724.

    Article  Google Scholar 

  52. Popoveniuc G, Sharma M, Devdhar M, Wexler JA, Carroll NM, Wartofsky L, et al. Graves’ disease and thymic hyperplasia: the relationship of thymic volume to thyroid function. Thyroid. 2010;20(9):1015–8.

    Article  Google Scholar 

  53. Illei PB, Shyu S. Fine needle aspiration of thymic epithelial neoplasms and non-neoplastic lesions. Semin Diagn Pathol. 2020;37(4):166–73.

    Article  Google Scholar 

  54. Wee T, Lee AF, Nadel H, Bray H. The paediatric thymus: recognising normal and ectopic thymic tissue. Clin Radiol. 2021;76(7):477–87.

    Article  CAS  Google Scholar 

  55. Klimek-piotrowska W, Mizia E, Kuzdzał J, Lazar A, Lis M, Pankowski J. Ectopic thymic tissue in the mediastinum: limitations for the operative treatment of Myasthenia gravis. Eur J Cardiothorac Surg. 2012;42(1):61–5.

    Article  Google Scholar 

  56. Monaco SE, Escobar F, Simons JP. Hassall’s corpuscles in the fine-needle aspiration cytology of pediatric ectopic thymic tissue. Diagn Cytopathol. 2017;45(8):735–7.

    Article  Google Scholar 

  57. Escobar FA, Pantanowitz L, Picarsic JL, Craig FE, Simons JP, Viswanathan PA, et al. Cytomorphology and sonographic features of ectopic thymic tissue diagnosed in paediatric FNA biopsies. Cytopathology. 2018;29(3):241–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liron Pantanowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gutierrez-Lanz, E.A., Lee, W.Y., Pantanowitz, L. (2022). Lymphoid and Hematopoietic Systems (Lymph Nodes, Thymus, Spleen, Bone Marrow). In: Lew, M., Pang, J., Pantanowitz, L. (eds) Normal Cytology. Springer, Cham. https://doi.org/10.1007/978-3-031-20336-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20336-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20335-0

  • Online ISBN: 978-3-031-20336-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics