Skip to main content

Eye

  • Chapter
  • First Online:
Practical Pharmaceutics

Abstract

In this chapter several aspects of ocular dosage forms are discussed with emphasis on eye drops, eye lotions and eye ointments prepared in pharmacies. Their formulation, method of preparation, packaging, storage and methods of administration are also discussed.

The bioavailability of active substances in ocular dosage forms is low due to the efficient barrier function of the cornea, lachrymation, tear turn over, and nasolacrimal drainage. Formulations should take into account these constraints. The vehicle and excipients selected should improve the permeation of the active substances into the eye or the residence in the conjunctival sac and thereby increase the therapeutic effects. Minimal eye irritation and good local tolerability of the preparation is of utmost importance.

When formulating aqueous ophthalmic preparations attention should be given to osmolality, pH, solubility, chemical interactions, stability of the active substance, together with viscosity and the choice of a suitable preservative. Sterility is of critical importance and therefore the most appropriate sterilisation method must be chosen.

Besides pharmaceutical factors, the correct administration of the eye preparation plays an important role. Therefore, clear instructions to the patients about eye drop administration and correct storage of the medicine is essential. It will add to the success of pharmaceutical care and patient compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gaudana R, Jwala J, Boddu SHS, Mitra AK (2009) Recent perspectives in ocular drug delivery. Pharm Res 26:1197–1216

    Article  CAS  PubMed  Google Scholar 

  2. del Amo EM, Urtti A (2008) Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today 13:135–143

    Article  PubMed  Google Scholar 

  3. Guzman-Aranguez A, Colligris B, Pintor J (2013) Contact lenses: promising devices for ocular drug delivery. J Ocul Pharmacol Ther 29:189–199

    Article  CAS  PubMed  Google Scholar 

  4. Jain GK, Warsi MH, Nirmal J et al (2012) Therapeutic stratagems for vascular degenerative disorders of the posterior eye. Drug Discov Today 17:748–759

    Article  CAS  PubMed  Google Scholar 

  5. Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG (2011) Drug delivery to the posterior segment of the eye. Drug Discov Today 16(5–6):270–277

    Article  CAS  PubMed  Google Scholar 

  6. Mofidfar M, Abdi B, Ahadian S, Mostafavi E, Desai TA, Abbasi F, Sun Y, Manche EE, Ta CN, Flowers CW (2021) Drug delivery to the anterior segment of the eye: a review of current and future treatment strategies. Int J Pharm 607:120924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dry eye: abnormalities of tear film mucins 2022. https://entokey.com/dry-eye-abnormalities-of-tear-film-mucins/. Accessed June 2022

  8. Khandelwal P, Liu S, Sullivan DA (2012) Androgen regulation of gene expression in human meibomian gland and conjunctival epithelial cells. Mol Vis 18:1055–1067

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Argüeso P, Gipson IK (2001) Epithelial mucins of the ocular surface: structure, biosynthesis and function. Exp Eye Res 73:281–289

    Article  PubMed  Google Scholar 

  10. Govindarajan B, Gipson IK (2010) Membrane-tethered mucins have multiple functions on the ocular surface. Exp Eye Res 90:655–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guillon M, Maïssa C (2010) Tear film evaporation – effect of age and gender. Cont Lens Anterior Eye 33:171–175

    Article  PubMed  Google Scholar 

  12. Dartt DA (2009) Neural regulation of lacrimal gland secretory processes: relevance in dry eye diseases. Prog Retin Eye Res 28:155–177

    Article  PubMed  PubMed Central  Google Scholar 

  13. Barabino S, Chen Y, Chauhan S, Dana R (2012) Ocular surface immunity: homeostatic mechanisms and their disruption in dry eye disease. Prog Retin Eye Res 31:271–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Acosta MC, Alfaro ML, Borras F et al (2006) Influence of age, gender and iris color on mechanical and chemical sensitivity of the cornea and conjunctiva. Exp Eye Res 83:932–938

    Article  CAS  PubMed  Google Scholar 

  15. Zhou L, Beuerman RW (2012) Tear analysis in ocular surface diseases. Prog Retin Eye Res 31:527–550

    Article  CAS  PubMed  Google Scholar 

  16. Caffery B, Joyce E, Boone A et al (2008) Tear lipocalin and lysozyme in Sjögren and non-Sjögren dry eye. Optom Vis Sci 85:661–667

    Article  PubMed  Google Scholar 

  17. Alcon. Tear film break up time. www.systane.com. Accessed 1 July 2014

  18. Tiffany JM, Winter N, Bliss G (1989) Tear film stability and tear surface tension. Curr Eye Res 8:507–515

    Article  CAS  PubMed  Google Scholar 

  19. Stevenson W, Chauhan SK, Dana R (2012) Dry eye disease. An immune-mediated ocular surface disorder. Arch Ophthalmol 130:90–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCann LC, Tomlinson A, Pearce EI, Papa V (2012) Effectiveness of artificial tears in the management of evaporative dry eye. Cornea 31:1–5

    Article  PubMed  Google Scholar 

  21. Kathuria A, Shamloo K, Jhanji V, Sharma A (2021) Categorization of marketed artificial tear formulations based on their ingredients: a rational approach for their use. J Clin Med 10(6):1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baudouin C, Cochener B, Pisella P-J et al (2012) Randomized, phase III comparing osmoprotective carboxymethylcellulose with sodium hyaluronate in dry eye disease. Eur J Ophthalmol 22:751–761

    Article  PubMed  Google Scholar 

  23. Rolando M, Autori S, Baino F et al (2009) Protecting the ocular surface and improving the quality of life of dry eye patients: a study of the efficacy of an HP-Guar containing ocular lubricant in a population of dry eye patients. J Ocul Pharmacol Ther 25:1–7

    Article  Google Scholar 

  24. Shimmura S, Ueno R, Matsumoto Y, Goto E, Higuchi A, Shimazaki J, Tsubota K (2003) Albumin as a tear supplement in the treatment of severe dry eye. Br J Ophthalmol 87(10):1279–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Escott GM, de Castro AL, Jacobus AP, Loss ES (2014) Insulin and IGF-I actions on IGF-I receptor in seminiferous tubules from immature rats. Biochim Biophys Acta 1838(5):1332–1337

    Article  CAS  PubMed  Google Scholar 

  26. Franchini M, Cruciani M, Mengoli C, Marano G, Capuzzo E, Pati I, Masiello F, Veropalumbo E, Pupella S, Vaglio S, Liumbruno GM (2019) Serum eye drops for the treatment of ocular surface diseases: a systematic review and meta-analysis. Blood Transf = Trasfusione del sangue 17(3):200–209

    Google Scholar 

  27. Ghate D, Edelhauser HF (2008) Barriers to glaucoma drug delivery. J Glaucoma 17:147–156

    Article  PubMed  Google Scholar 

  28. Longwell A, Birss S, Keller N et al (1976) Effect of topically applied pilocarpine on tear film pH. J Pharm Sci 65:1654–1657

    Article  CAS  PubMed  Google Scholar 

  29. Molokhia SA, Thomas SC, Garff KJ et al (2013) Anterior eye segment drug delivery systems: current treatments and future challenges. J Ocul Pharmacol Ther 29:92–105

    Article  CAS  PubMed  Google Scholar 

  30. Van Santvliet L, Ludwig A (2004) Determinants of eye drop size. Surv Ophthalmol 49:197–213

    Article  PubMed  Google Scholar 

  31. Suzuki M, Massingale ML, Ye F et al (2010) Tear osmolarity as a biomarker for dry eye disease severity. Invest Ophthalmol Vis Sci 51:4557–4561

    Article  PubMed  Google Scholar 

  32. Ellis PP, Wu P-Y, Pfoff DS et al (1992) Effect of nasolacrimal occlusion on timolol concentrations in the aqueous humor of the human eye. J Pharm Sci 81:219–220

    Article  CAS  PubMed  Google Scholar 

  33. Rahman MQ, Chuah KS, Macdonald ECA et al (2012) The effect of pH, dilution, and temperature on the viscosity of ocular lubricants -shift in rheological parameters and potential clinical significance. Eye 26:1579–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Coles WH, Jaros PA (1984) Dynamics of ocular surface pH. Br J Ophthalmol 68:549–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carney LG, Mauger TF, Hill RM (1989) Buffering in human tears: pH responses to acid and base challenge. Invest Ophthalmol Vis Sci 30:747–754

    CAS  PubMed  Google Scholar 

  36. Li M, Du CX, Zhu DX et al (2012) Daytime variations of tear osmolarity and tear meniscus volume. Eye Contact Lens 38:282–287

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gaffney EA, Tiffany JM, Yokoi N, Bron AJ (2010) A mass and solute balance model for tear volume and osmolarity in the normal and the dry eye. Prog Retin Eye Res 29:59–78

    Article  CAS  PubMed  Google Scholar 

  38. Baeyens V, Bron A, Baudouin C (2012) Efficacy of 0.18% hypotonic hyaluronate ophthalmic solution in the treatment of signs and symptoms of dry eye disease. J Fr Ophthalmol 35:412–419

    Article  CAS  Google Scholar 

  39. Riegelman S, Vaughan DG Jr, Okumoto M (1955) Compounding ophthalmic solutions. J Am Pharm Ass 16:742–746

    Google Scholar 

  40. Draize JH, Woodward G, Calvery HO (1944) Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther 82:377–390

    CAS  Google Scholar 

  41. Schrage A, Kolle SN, Moreno MCR et al (2011) The bovine corneal opacity and permeability test in routine ocular irritation testing and its improvement within the limits of OECD test guideline 437. ATLA-Altern Lab Anim 39:37–53

    Article  CAS  Google Scholar 

  42. Engelke M, Zorn-Kruppa M, Gabel D et al (2013) A human hemi-corneal model for eye irritation testing: quality control of production, reliability and predictive capacity. Toxicol in Vitro 27:458–468

    Article  CAS  PubMed  Google Scholar 

  43. Hirata H, Meng ID (2010) Cold-sensitive corneal afferents respond to a variety of ocular stimuli central to tear production: implications for dry eye disease. Invest Ophthalmol Vis Sci 51:3969–3976

    Article  PubMed  PubMed Central  Google Scholar 

  44. Labbé A, Alalwani H, Van Went C et al (2012) The relationship between subbasal nerve morphology and corneal sensation in ocular surface disease. Invest Ophthalmol Vis Sci 53:4926–4931

    Article  PubMed  Google Scholar 

  45. Salminen L (1990) Review: systemic absorption of topically applied ocular drugs in humans. J Ocul Pharmcol 6:243–249

    Article  CAS  Google Scholar 

  46. Nadal J, de la Fuente V, Aradias M et al (1987) Toxic coma induced by anticholinergic eye drops. Br Med J 295:1352

    Article  CAS  Google Scholar 

  47. Hanna C, Massey JY, Hendrikson RO et al (1978) Ocular penetration of topical chloramphenicol in humans. Arch Ophthalmol 96:1258–1261

    Article  CAS  PubMed  Google Scholar 

  48. Fraunfelder FW, Fraunfelder FT (2013) Restricting topical ocular chloramphenicol eye drop use in the United States. Did we overreact? Am J Ophthalmol 156:420–422

    Article  PubMed  Google Scholar 

  49. Chloramphenicol-Augentropfen 0,5%, NRF 15.10. Version 2021-2. In: Deutscher Arzneimittel-Codex/Neues Rezeptur-Formularium (DAC/NRF). ABDA. Eschborn (D): Govi-Verlag. Avoxa – Mediengruppe Deutscher Apotheker GmbH, Eschborn

    Google Scholar 

  50. Almasi J (2018) Physikalisch-chemische Stabilität von rekonstituierten Mitomycin Lösungen (Mito Medac® mit Harnstoff). Krankenhauspharmazie 39(5):209–233

    Google Scholar 

  51. DAC/NRF-Rezepturhinweis: Mitomycin (17.05.2022). Eschborn (D): Govi-Verlag. Avoxa – Mediengruppe Deutscher Apotheker GmbH, Eschborn

    Google Scholar 

  52. Reichhold J (2022) Rezepturmäßige Herstellung von Humaninsulin Normal Augentropfen 25 I. E./ml zur Behandlung von Epithelschäden und Graft-versus-Host-Disease am Auge. Krankenhauspharmazie 43(5):186–217

    Google Scholar 

  53. Cuartero-Martínez A, Hermelo-Vidal G, Castro-Balado A, Gómez-García Á, González-Barcia M, Otero-Espinar FJ, Fernández-Ferreiro A, Mondelo-García C (2022) Stability of insulin eye drops in the treatment of refractory corneal ulcers. Estabilidad del colirio de insulina para el tratamiento de úlceras corneales refractarias. Farmacia hospitalaria : organo oficial de expresion cientifica de la Sociedad Espanola de Farmacia Hospitalaria 46(6):335–339

    Google Scholar 

  54. Gómez M M, Albaladejo P M, Sanz I R, Crespo C B, Durán J P, Alemany A L, ... & Martí M C (2022). 3PC-020 Chemical stability and physical compatibility of insulin eye drops used in clinical practice

    Google Scholar 

  55. Fernandez MD, Alvarado et al (2021) 3PC-066 Compounding an eye drop formulation of topical insulin for corneal defects refractory to previous treatment: experience in real clinical practice. A20-A20

    Google Scholar 

  56. Shtein RM, Shen JF, Kuo AN, Hammersmith KM, Li JY, Weikert MP (2020) Autologous serum-based eye drops for treatment of ocular surface disease: a report by the American Academy of Ophthalmology. Ophthalmology 127(1):128–133

    Article  PubMed  Google Scholar 

  57. Cortizas BF, Queiruga MG, Garcia CM et al (2016) PP-034 Use of autologous serum eye drops prepared in a hospital pharmacy service. Eur J Hosp Pharm 23:A209

    Article  Google Scholar 

  58. Wandel D, Bernasconi L, Egger R (2017) PP-008 Stability and sterility of autologous serum eye-drops after long term storage. Eur J Hosp Pharm 24:A205

    Google Scholar 

  59. Roura-Turet J, Rodriguez-Reyes M, Guerrero-Molina L, Soy-Muner D, López-Cabezas C (2021) Stability of 5% vancomycin ophthalmic solution prepared using balanced salt solution after freezing for 90 days. Am J Health Syst Pharm 78(15):1444–1447. https://doi.org/10.1093/ajhp/zxab195

    Article  PubMed  Google Scholar 

  60. Bell K, de Padua Soares Bezerra B, Mofokeng M et al (2021) Learning from the past: Mitomycin C use in trabeculectomy and its application in bleb-forming minimally invasive glaucoma surgery. Surv Ophthalmol 66(1):109–123

    Article  PubMed  Google Scholar 

  61. Velpandian T, Saluja V, Ravi AK et al (2005) Evaluation of the stability of extemporaneously prepared ophthalmic formulation of mitomycin C. J Ocul Pharmacol Ther 21(3):217–222

    Article  CAS  PubMed  Google Scholar 

  62. Gautier E, Saillard J, Deshayes C, Vrignaud S, Lagarce F, Briot T (2018) Stability of a 50 mg/mL ceftazidime eye-drops formulation. Pharm Technol Hosp Pharm 3(4):219–226

    Article  Google Scholar 

  63. Morand K, Bartoletti AC, Bochot A, Barratt G, Brandely ML, Chast F (2007) Liposomal amphotericin B eye drops to treat fungal keratitis: physico-chemical and formulation stability. Int J Pharm 344(1–2):150–153

    Article  CAS  PubMed  Google Scholar 

  64. Allen Loyd V Jr (1998) Fluconazole 0.2% ophthalmic solution. Int J Pharm Compound 2(3):228

    Google Scholar 

  65. Al-Badriyeh D, Li J, Stewart K et al (2009) Stability of extemporaneously prepared voriconazole ophthalmic solution. Am J Health-Syst Pharm 66:1478–1483

    Article  CAS  PubMed  Google Scholar 

  66. Povidon-Iod-Augentropfen 1,25% / 2,5% / 5%, NRF 15.13. Version 2014/1. In: Deutscher Arzneimittel-Codex/Neues Rezeptur-Formularium (DAC/NRF). ABDA. Eschborn (D): Govi-Verlag. Avoxa – Mediengruppe Deutscher Apotheker GmbH, Eschborn

    Google Scholar 

  67. Polihexanid-Augentropfen 0,02%, NRF 15.25. Version 2015/1. In: Deutscher Arzneimittel-Codex/Neues Rezeptur-Formularium (DAC/NRF). ABDA. Eschborn (D): Govi-Verlag. Avoxa – Mediengruppe Deutscher Apotheker GmbH, Eschborn

    Google Scholar 

  68. Polihexanid-Augenbad 0,04%, NRF 15.26. Version 2015/1. In: Deutscher Arzneimittel-Codex/Neues Rezeptur-Formularium (DAC/NRF). ABDA. Eschborn (D): Govi-Verlag. Avoxa – Mediengruppe Deutscher Apotheker GmbH, Eschborn

    Google Scholar 

  69. Ölige Ciclosporin-Augentropfen 1% / 2%, NRF 15.21. Version 2020-1. In: Deutscher Arzneimittel-Codex/Neues Rezeptur-Formularium (DAC/NRF). ABDA. Eschborn (D): Govi-Verlag. Avoxa – Mediengruppe Deutscher Apotheker GmbH, Eschborn

    Google Scholar 

  70. Irritatie bij pilocarpineoogdruppels (2000) Pharm Weekbl 135:31

    Google Scholar 

  71. Chowdan M, Lang JC, Missel O (2013) Ophthalmic preparations. Section 5: pharmaceutical dosage forms: manufacturing and compounding. In: Allen LV (ed) Remington: the science and practice of pharmacy, 22nd edn. Pharmaceutical Press, London/Philadelphia, p 920

    Google Scholar 

  72. Proosdij- van Hartzema EG (1966) Boriumverbindingen. Verleden heden en toekomst. Ned Tijdsch Geneesk 110:2260–2269

    Google Scholar 

  73. Stellungnahme der Arzneimittelkommission der Deutschen Apotheker, NRF I.5.2.1. Version 2022-1. In: Deutscher Arzneimittel-Codex/Neues Rezeptur-Formularium (DAC/NRF). ABDA. Eschborn (D): Govi-Verlag. Avoxa – Mediengruppe Deutscher Apotheker GmbH, Eschborn

    Google Scholar 

  74. Horikx A (2005) WINap. Boorzuur in oogdruppels ook beneden 3 jaar. Pharm Weekbl 140:182

    Google Scholar 

  75. European Medicines Agency, Committee for Medicinal Products for Human Use (CHMP). Questions and answers on the use of phosphates in eye drops, 2012. www.ema.europa.eu/docs/en_GB/document_library/Medicine_QA/2012/12/WC500136247.pdf

  76. Tromp THFJ, Dankert J, De Rooy S et al (1976) De conservering van oogdruppels III. Een onderzoek naar de interactie van hydroxypropylmethylcellulose en benzalkoniumchloride. Pharm Weekbl 111:561–569

    CAS  Google Scholar 

  77. Agrawal AK, Das M, Jain S (2012) In situ gel systems as ‘smart’ carriers for sustained ocular drug delivery. Expert Opin Drug Deliv 9:383–402

    Article  CAS  PubMed  Google Scholar 

  78. Rupenthal ID, Green CR, Alany RG (2011) Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 2: precorneal retention and in vivo pharmacodynamic study. Int J Pharm 411:78–85

    Article  CAS  PubMed  Google Scholar 

  79. Ludwig A (2005) The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 57:1595–1639

    Article  CAS  PubMed  Google Scholar 

  80. Jiao J (2008) Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Deliv Rev 60:1663–1673

    Article  CAS  PubMed  Google Scholar 

  81. Bullock JD (2008) Temperature instability of ReNu with MoistureLoc. A new theory to explain the worldwide Fusarium keratitis epidemic of 2004–2006. Arch Ophthalmol 126:1493–1498

    Article  PubMed  Google Scholar 

  82. Behlau I, Gilmore MS (2008) Microbial biofilms in ophthalmology and infectious disease. Arch Ophthalmol 126:1572–1581

    Article  CAS  PubMed  Google Scholar 

  83. Liu Y, Pinzon-Arango PA, Strauss J et al (2009) Fundamentals of bacterial adhesion applied toward infection prevention: focus on two case studies. Pharm Eng 29:56–66

    Google Scholar 

  84. Tetracainhydrochlorid-Augentropfen 0,5%/1% pH 6,5, NRF 15.12. Version 2013-1. In: Deutscher Arzneimittel-Codex/Neues Rezeptur-Formularium (DAC/NRF). ABDA. Eschborn (D): Govi-Verlag. Avoxa – Mediengruppe Deutscher Apotheker GmbH, Eschborn

    Google Scholar 

  85. Neutrale Indometacin-Augentropfen 0,1% / Neutrale Indometacin-Augentropfen 0,1% ohne Konservierung, NRF 15.15. Version 2018-1. In: Deutscher Arzneimittel-Codex/Neues Rezeptur-Formularium (DAC/NRF). ABDA. Eschborn (D): Govi-Verlag. Avoxa – Mediengruppe Deutscher Apotheker GmbH, Eschborn

    Google Scholar 

  86. Furrer P, Mayer JM, Gurny R (2002) Ocular tolerance of preservatives and alternatives. Eur J Pharm Biopharm 53:263–280

    Article  CAS  PubMed  Google Scholar 

  87. Martone G, Frezotti P, Tosi GM et al (2009) An in vivo confocal microscopy analysis of effects of topical antiglaucoma therapy with preservatives on corneal innervation and morphology. Am J Ophthalmol 147:725–735

    Article  PubMed  Google Scholar 

  88. Rouland JF, Traverso CE, Stalmans I et al (2013) Efficacy and safety of preservative-free latanoprost eyedrops, compared with BAK-preserved latanoprost in patients with ocular hypertension or glaucoma. Br J Ophthalmol 97:196–200

    Article  PubMed  Google Scholar 

  89. Baudouin C, Labbé A, Liang H et al (2010) Preservatives in eyedrops: the good, the bad and the ugly. Prog Retin Eye Res 29:312–334

    Article  CAS  PubMed  Google Scholar 

  90. Huber-van der Velden KK, Thieme H, Eichhorn M (2012) Morphologische Veränderungen durch Konservierungsmittel in Augentropfen. Ophthalmologe 109:1077–1081

    Article  CAS  PubMed  Google Scholar 

  91. Richards RME (1971) Inactivation of resistant Pseudomonas aeruginosa by antibacterial combinations. J Pharm 23:136S

    Article  CAS  Google Scholar 

  92. Hoffmann H, Benzalkoniumchlorid DAC (1979) Pharm Ztg 129(1994):1728–1730

    Google Scholar 

  93. Sarkar J, Chaudhary S, Namavari A et al (2012) Corneal neurotoxicity due to topical benzalkonium chloride. Invest Ophthalmol Vis Sci 53:1792–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Anwar Z, Wellik SR, Galor A (2013) Glaucoma therapy and ocular surface disease: current literature and recommendations. Curr Opin Ophthalmol 24:136–143

    Article  PubMed  Google Scholar 

  95. Liang H, Brignole-Baudouin F, Riancho L, Baudouin C (2012) Reduced in vivo ocular toxicity with Polyquad-preserved travoprost versus benzalkonium chloride-preserved travoprost or latanoprost ophthalmic solutions. Ophthalmic Res 48:89–101

    Article  CAS  PubMed  Google Scholar 

  96. Edetathaltige Benzalkoniumchlorid-Stammlösung 0,1%, NRF S.18. Version 2016-1. In: Deutscher Arzneimittel-Codex/Neues Rezeptur-Formularium (DAC/NRF). ABDA. Eschborn (D): Govi-Verlag. Avoxa – Mediengruppe Deutscher Apotheker GmbH, Eschborn

    Google Scholar 

  97. Rolando M, Crider JY, Kahook MY (2011) Ophthalmic preservatives: focus on polyquaternium-1. Expert Opin Drug Deliv 8:1425–1438

    Article  CAS  PubMed  Google Scholar 

  98. Aihara M, Oshima H, Araie M (2013) Effects of SofZia – preserved travoprost and benzalkonium chloride-preserved latanoprost on the ocular surface – a multicentre randomized single-masked study. Acta Ophthalmol 91:e7–e14

    Article  CAS  PubMed  Google Scholar 

  99. Pharmazeutisches Laboratorium des DAC/NRF (2018) Tabellen für die Rezeptur: Plausibilitätsprüfung in der Apotheke, 10th edn. Eschborn (D): Govi-Verlag. Avoxa – Mediengruppe Deutscher Apotheker GmbH, Eschborn

    Google Scholar 

  100. Benzalkonium chloride solution 0.1 g/L + Na edetate 1 g/L (FNA) (2009) Formularium der Nederlandse Apothekers. Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie (KNMP), Den Haag

    Google Scholar 

  101. Boric acid 20 g/L– Benzalkonium chloride solution 0.1 g/L + Na edetate 1 g/L (FNA) 2009. Formularium der Nederlandse Apothekers. Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie (KNMP), Den Haag

    Google Scholar 

  102. Hypromellose – Benzalkonium chloride solution 0.1 g/L + Na edetate 1 g/L (FNA) 2009. Formularium der Nederlandse Apothekers. Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie (KNMP), Den Haag

    Google Scholar 

  103. Chlorhexidindiacetat-Stammlösung 0,1%, NRF S.7. Version 2019-2. In: Deutscher Arzneimittel-Codex/Neues Rezeptur-Formularium (DAC/NRF). ABDA. Eschborn (D): Govi-Verlag. Avoxa – Mediengruppe Deutscher Apotheker GmbH, Eschborn

    Google Scholar 

  104. Thiomersal-Stammlösung 0,02%, NRF S.4. Version 2013-2. In: Deutscher Arzneimittel-Codex/Neues Rezeptur-Formularium (DAC/NRF). ABDA. Eschborn (D): Govi-Verlag. Avoxa – Mediengruppe Deutscher Apotheker GmbH, Eschborn

    Google Scholar 

  105. Davis SA, Sleath B, Carpenter DM, Blalock SJ, Muir KW, Budenz DL (2018) Drop instillation and glaucoma. Curr Opin Ophthalmol 29(2):171–177

    Article  PubMed  PubMed Central  Google Scholar 

  106. Daehn T, Schneider A, Knobloch J, Hellwinkel O, Spitzer MS, Kromer R (2021) Contamination of multi dose eyedrops in the intra and perioperative context. Sci Rep 11(1):20364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Panday PVN, van der Heiden J, Dillingh J et al (2007) Microbiologische validatie van de oogdruppelflacon met snap-cap: de casus acetylcysteineoogdruppels 5%. Pharm Weekbl Wetenschappelijk Platform 1:16–21

    Google Scholar 

  108. Festlegung der Aufbrauchsfrist nach pharmazeutischer Qualität, NRF I.4.2.1. Version 2022-1. In: Deutscher Arzneimittel-Codex/Neues Rezeptur-Formularium (DAC/NRF). ABDA. Eschborn (D): Govi-Verlag. Avoxa – Mediengruppe Deutscher Apotheker GmbH, Eschborn

    Google Scholar 

  109. Edetaatoogwassing 2% FNA. Jaar 2016. Formularium der Nederlandse Apothekers. Koninklijke Nederlandse Maatschappij ter bevordering van de Pharmacie KNMP, Den Haag

    Google Scholar 

  110. Claassen K, Dos Anjos DR, Broding HC (2021) Current status of emergency treatment of chemical eye burns in workplaces. Int J Ophthalmol 14(2):306

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bizrah M, Yusuf A, Ahmad S (2019) An update on chemical eye burns. Eye (Lond) 33(9):1362–1377

    Article  CAS  PubMed  Google Scholar 

  112. Alexander KS, Wasiak J, Cleland H (2018) Chemical burns: diphoterine untangled. Burns 44(4):752–766

    Article  PubMed  Google Scholar 

  113. Erythromycine-oogzalf 0.5% FNA. Jaar 2009. Formularium der Nederlandse Apothekers. Koninklijke Nederlandse Maatschappij ter bevordering van de Pharmacie KNMP, Den Haag

    Google Scholar 

  114. Natriumchloride-oogzalf 5% FNA. Jaar 2009. Formularium der Nederlandse Apothekers. Koninklijke Nederlandse Maatschappij ter bevordering van de Pharmacie KNMP, Den Haag

    Google Scholar 

  115. Chlooramfenicol-oogzalf 1% FNA. Jaar 2014. Formularium der Nederlandse Apothekers. Koninklijke Nederlandse Maatschappij ter bevordering van de Pharmacie KNMP, Den Haag

    Google Scholar 

  116. Emulgierende Augensalbe DAC. Fassung 2015/1. In: Deutscher Arzneimittel-Codex/Neues Rezeptur-Formularium (DAC/NRF). ABDA. Eschborn (D): Govi-Verlag. Avoxa – Mediengruppe Deutscher Apotheker GmbH, Eschborn

    Google Scholar 

  117. Oogzalfbasis. Jaar 2016. Formularium der Nederlandse Apothekers. Koninklijke Nederlandse Maatschappij ter bevordering van de Pharmacie KNMP, Den Haag

    Google Scholar 

  118. Hiraoka T, Yamamoto T, Okamoto F, Oshika T (2012) Time course of changes in ocular wave front aberration after administration of eye ointment. Eye 26:1310–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jew RK, Soo-Hoo W, Erush SC, Amiri E (eds) (2016) Appendix C: ASHP guidelines on pharmacy-prepared ophthalmic products. In: Extemporaneous formulations for pediatric, geriatric, and special needs patients. American Society of Health-System Pharmacists, Bethesda. Accessed 7 July 2022

    Google Scholar 

  120. Behrens-Baumann W (2009) Keratomycosis: diagnosis and therapy. Ophthalmologe 106:471–481

    Article  CAS  PubMed  Google Scholar 

  121. Dupuis A, Tournier N, Le Moal G, Venisse N (2009) Preparation and stability of voriconazole eye drop solution. Antimicrob Agents Chemother 53:798–799

    Article  CAS  PubMed  Google Scholar 

  122. Gilead, Fachinformation (Version: November 2019): AmBisome® 50 mg Pulver zur Herstellung einer Infusionslösung. Accessed July 2022

    Google Scholar 

  123. Bundesapothekerkammer, Arbeitshilfe zur Qualitätssicherung (Version: 13.11.2019): Information und Beratung des Patienten zur richtigen Anwendung von Darreichungsformen

    Google Scholar 

  124. Daniels R (2010) Herstellung von Ophthalmika in der Apotheke. Pharm Unserer Zt 39:306–311

    Article  Google Scholar 

  125. Wagenaar R (2006) Tetracycline oogzalf: conflicterende eisen. Pharm Weekbl 141:956

    Google Scholar 

  126. Romijn M (2006) Een betere oplossing. Tetracycline oogzalf: conflicterende eisen. Pharm Weekbl 141:1019

    Google Scholar 

  127. Nordmann JP, Baudouin C, Bron A (2009) Xal-Ease®: impact of an ocular hypotensive delivery device on ease of eyedrop administration, patient compliance, and satisfaction. Eur J Ophthalmol 19:949–956

    Article  PubMed  Google Scholar 

  128. Dua HS (1998) Bacterial keratitis in the critically ill and comatose patient. Lancet 351:387–388

    Article  CAS  PubMed  Google Scholar 

  129. Burns E, Mulley GP (1992) Practical problems with eye-drops among elderly ophthalmology outpatients. Age Ageing 21:168–170

    Article  CAS  PubMed  Google Scholar 

  130. Smith SE (1991) Eyedrop instillation for reluctant children. Br J Ophthalmol 75:480–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Parkkari M, Latvala T, Ropo A (2010) Handling test of eye drop dispenser – comparison of unit-dose pipettes with conventional eye drop bottles. J Ocul Pharmacol Ther 26:273–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Connor AJ, Severn PS (2011) Force requirements in topical medicine use- the squeezability factor. Eye 25:466–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Boventer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boventer, J., Krämer, I., Reichhold, J. (2023). Eye. In: Le Brun, P., Crauste-Manciet, S., Krämer, I., Smith, J., Woerdenbag, H. (eds) Practical Pharmaceutics. Springer, Cham. https://doi.org/10.1007/978-3-031-20298-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20298-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20297-1

  • Online ISBN: 978-3-031-20298-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics