Skip to main content

Auto(mated)nomous Assembly

  • 365 Accesses

Part of the Lecture Notes in Civil Engineering book series (LNCE,volume 306)

Abstract

The paper presents research on a hierarchical, computational design approach for the aggregation of dry-joint, interlocking building blocks and their autonomous assembly by robots. The elements are based on the SL Block system developed by Shen-Guan Shih. The work proposes strategies to assemble multiple SL blocks to form larger aggregations which subsequently turn into building elements on another scale. This approach allows reconsidering the resolution of architectural constructions. Building elements that have previously been considered as solid and monolithic can now be aggregated by many small SL-Blocks. Those dry-joint aggregations allow for easy disassembly and reassembly into different configurations and therefore contribute to a circular reuse of building elements. In order to facilitate such a permanent transformation, the research also includes first steps towards the autonomous assembly of building blocks through a robot including the planning for how to optimally place the parts, as well as ensuring feasible execution by the robot. The goal is a fully autonomous pipeline that takes as input a user-defined, desired shape, and the available building blocks, and directly maps to actions that are executable by the robot. As a result, the desired shape should be optimally resembled through the robot’s autonomous actions. The research therefore addresses handling the combinatorial search space regarding the possibilities to combine the available parts, incorporate the constraints of the robot, creating a feasible plan that ensures the stability of the structure at any point in the construction process, avoiding collisions between the robot and the structure, and in the case of SL-Blocks, trying to ensure that the overall structure is interlocking.

Keywords

  • Hierarchical assembly
  • SL-Blocks
  • 3D Polyomino
  • Dry-joint construction
  • Autonomous assembly
  • Reinforcement learning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-20241-4_12
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-031-20241-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

References

  • Auckly, D.: Folklore, the Borromean rings, the icosahedron, and three dimensions. Math. Mag. 93(5), 330–342 (2020)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Bapst, V., Sanchez-Gonzalez, A., Doersch, C., Stachenfeld, K., Kohli, P., Battaglia, P., Hamrick, J.: Structured agents for physical construction. In: International Conference on Machine Learning (2019)

    Google Scholar 

  • Berge, B.: Ecology of Building Materials. Routledge (2007). https://doi.org/10.4324/9780080504988

    CrossRef  Google Scholar 

  • Clisby, N., Jensen, I.: A new transfer-matrix algorithm for exact enumerations: self-avoiding polygons on the square lattice. J. Phys. A: Math. Theor. 45(11), 115202 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Daniel, D.: Katerra’s $2 billion legacy. Architect Magazine. https://www.architectmagazine.com/technology/katerras-2-billion-legacy_o (2021). Last Accessed 01 May 2022

  • Driess, D., Ha, J.S., Toussaint, M.: Learning to solve sequential physical reasoning problems from a scene image. Int. J. Robot. Res. 40(12–14), 1435–1466 (2021)

    CrossRef  Google Scholar 

  • Dyskin, A.V., Estrin, Y., Kanel-Belov, A.J., Pasternak, E.: Toughening by fragmentation—how topology helps. Adv. Eng. Mater. 3(11), 885–888 (2001)

    CrossRef  Google Scholar 

  • Eagle, A., Kato, T., Minato, Y.: Solving tiling puzzles with quantum annealing. In: arXiv preprint (2019)

    Google Scholar 

  • Estrin, Y., Dyskin, A.V., Pasternak, E.: Topological interlocking as a material design concept. Mater. Sci. Eng., C 31(6), 1189–1194 (2011)

    CrossRef  Google Scholar 

  • Funk, N., Chalvatzaki, G., Belousov, B., Peters, J.: Learn2Assemble with Structured Representations and Search for robotic architectural construction. In: Conference on Robot Learning (2022a)

    Google Scholar 

  • Funk, N., Menzenbach, S., Chalvatzaki, G., Peters, J.: Graph-based reinforcement learning meets mixed integer programs: an application to 3D robot assembly discovery. In: arXiv preprint (2022b)

    Google Scholar 

  • Garrett, C., Huang, Y., Lozano-Perez, T., Mueller, C.: Scalable and probabilistically complete planning for robotic spatial extrusion. In: Proceedings of Robotics: Science and Systems (2020)

    Google Scholar 

  • Garrett, C., Kaelbling, L., Lozano-Pérez, T.: Learning to rank for synthesizing planning heuristics. In: IJCAI (2016)

    Google Scholar 

  • Gershenfeld, N.: How to make almost anything: the digital fabrication revolution. Foreign Aff. 91, 43 (2012)

    Google Scholar 

  • Golomb, S.W.: Tiling with polyominoes. J. Comb. Theory 1(2), 280–296 (1966)

    CrossRef  MathSciNet  MATH  Google Scholar 

  • Hall, D.M., Lessing, J., Whyte, J.: New business models for industrialized construction. In: Bolpagni, M., Gavina, R., Ribeiro, D. (eds.) Industry 4.0 for the Built Environment. SI, vol. 20, pp. 297–314. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-82430-3_13

    CrossRef  Google Scholar 

  • Hartmann, V., Oguz, O., Driess, D., Toussaint, M., Menges, A.: Robust task and motion planning for long-horizon architectural construction planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020)

    Google Scholar 

  • Kaelbling, L., Lozano-Pérez, T.: Hierarchical planning in the now. In: Workshops at the Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  • Mather, A., Cipra, R., Siegmund, T.: Structural integrity during remanufacture of a topologically interlocked material. Int. J. Struct. Integr. 3(1), 61 (2012)

    CrossRef  Google Scholar 

  • Mnih, V., et al.: Playing atari with deep reinforcement learning. In: arXiv preprint (2013)

    Google Scholar 

  • Protzen, J.P.: Inca quarrying and stonecutting. J. Soc. Archit. Hist. 44(2), 161–182 (1985)

    CrossRef  Google Scholar 

  • Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    CrossRef  Google Scholar 

  • Shih, S.G.: On the hierarchical construction of sl blocks–a generative system that builds selfinterlocking structures. Advances in Architectural Geometry, 3778–4 (2016)

    Google Scholar 

  • Shih, S.G.: The art and mathematics of self-interlocking SL blocks. In: Proceedings of Bridges 2018: Mathematics, Art, Music, Architecture, Education, Culture (2018)

    Google Scholar 

  • Song, P., Fu, C.W., Cohen-Or, D.: Recursive interlocking puzzles. ACM Trans. Graph. (TOG) 31(6), 1–10 (2012)

    CrossRef  Google Scholar 

  • Song, P., et al.: Reconfigurable interlocking furniture. ACM Transactions on Graphics (TOG) 36(6), 1–14 (2017)

    CrossRef  Google Scholar 

  • Takefuji, Y., Lee, Y.C.: A parallel algorithm for tiling problems. IEEE Trans. Neural Netw. 1(1), 143–145 (1990)

    CrossRef  Google Scholar 

  • Tessmann, O., Rossi, A.: Geometry as interface: parametric and combinatorial topological interlocking assemblies. J. Appl. Mech. 86(11) (2019)

    Google Scholar 

  • Tessmann, O.: Topological interlocking assemblies. In: Physical Digitality—Proceedings of the 30th International Conference on Education and Research in Computer Aided Architectural Design in Europe (2012)

    Google Scholar 

  • Toussaint, M.: Logic-geometric programming: an optimization-based approach to combined task and motion planning. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  • Weizmann, M., Amir, O., Grobman, Y.J.: The effect of block geometry on structural behavior of topological interlocking assemblies. Autom. Constr. 128, 103717 (2021)

    CrossRef  Google Scholar 

  • Wibranek, B., Liu, Y., Funk, N., Belousov, B., Peters, J., Tessmann, O.: Reinforcement learning for sequential assembly of SL-blocks-self-interlocking combinatorial design based on machine learning. In: Proceedings of the 39th eCAADe Conference (2021)

    Google Scholar 

  • Zhanat, K., Corrales, J.A., Perdereau, V.: Tactile sensing in dexterous robot hands. Robot. Auton. Syst. 74, 195–220 (2015)

    CrossRef  Google Scholar 

Download references

Acknowledgment

This research is funded by the Bundesinstitut für Bau-, Stadt- und Raumforschung on behalf of the Bundesministeriums des Innern, für Bau und Heimat with funds from the Zukunft Bau research grant programme. Niklas Funk acknowledges the support from the Artificial Intelligence in Construction (AICO) grant by the Nexplore/Hochtief Collaboration Lab at TU Darmstadt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Tessmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Belousov, B., Funk, N., Chalvatzaki, G., Peters, J., Tessmann, O. (2023). Auto(mated)nomous Assembly. In: Gomes Correia, A., Azenha, M., Cruz, P.J.S., Novais, P., Pereira, P. (eds) Trends on Construction in the Digital Era. ISIC 2022. Lecture Notes in Civil Engineering, vol 306. Springer, Cham. https://doi.org/10.1007/978-3-031-20241-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20241-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20240-7

  • Online ISBN: 978-3-031-20241-4

  • eBook Packages: EngineeringEngineering (R0)