Skip to main content

MDF-Net: Multimodal Deep Fusion for Large-Scale Product Recognition

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13628))

Included in the following conference series:

  • 1088 Accesses

Abstract

Large-scale production recognition systems are crucial for building efficient E-commerce platforms. However, various traditional product recognition approaches are based on single-modal data input (e.g., image or text), which limits recognition performance. To tackle this issue, in this paper, we propose a Multimodal Deep Fusion Network (MDF-Net) for accurate large-scale product recognition. The MDF-Net has a two-stream late fusion architecture, with a CNN model and a bi-directional language model that respectively extract semantic latent features from multimodal inputs. Image and text features are fused via Hadamard product, then jointly generate results. Further, we investigated the integration of attention mechanism and residual connection to respectively improve the text and image representations. We conduct experiments on a large-scale multimodal E-commerce product dataset MEP-3M, which consists of three million image-text product data. MDF-Net achieves a 93.72% classification accuracy over 599 fine-grained classes. Empirical results demonstrated that the MDF-Net yields better performance than traditional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhong, C., Jiang, L., Liang, Y., Sun, H., Ma, C.: Temporal multiple-convolutional network for commodity classification of online retail platform data. In: Proceedings of the 2020 12th International Conference on Machine Learning and Computing, pp. 236–241 (2020)

    Google Scholar 

  2. Zahera, H.M., Sherif, M.: ProBERT: product data classification with fine-tuning BERT model. In: MWPD@ ISWC (2020)

    Google Scholar 

  3. Yang, Y., Wang, X., Zhao, Q., Sui, T.: Two-level attentions and grouping attention convolutional network for fine-grained image classification. Appl. Sci. 9(9), 1939 (2019)

    Article  Google Scholar 

  4. Morency, L.P., Liang, P.P., Zadeh, A.: Tutorial on multimodal machine learning. In: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts, Seattle, United States, pp. 33–38. Association for Computational Linguistics, July 2022

    Google Scholar 

  5. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: ICML (2011)

    Google Scholar 

  6. Conneau, A., Schwenk, H., Barrault, L., Lecun, Y.: Very deep convolutional networks for text classification. arXiv preprint arXiv:1606.01781 (2016)

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  8. Zhang, Z., Bizer, C., Peeters, R., Primpeli, A.: MWPD 2020: semantic web challenge on mining the web of html-embedded product data. In: MWPD@ ISWC (2020)

    Google Scholar 

  9. Wazarkar, S., Keshavamurthy, B.N.: Fashion image classification using matching points with linear convolution. Multimedia Tools Appl. 77(19), 25941–25958 (2018). https://doi.org/10.1007/s11042-018-5829-4

    Article  Google Scholar 

  10. Zhang, W., Yu, J., Hu, H., Hu, H., Qin, Z.: Multimodal feature fusion by relational reasoning and attention for visual question answering. Inf. Fusion 55, 116–126 (2020)

    Article  Google Scholar 

  11. Misikir Tashu, T., Fattouh, S., Kiss, P., Horvath, T.: Multimodal e-commerce product classification using hierarchical fusion. arXiv e-prints (2022) arXiv-2207

    Google Scholar 

  12. Li, L., Nie, Y., Han, W., Huang, J.: A multi-attention-based bidirectional long short-term memory network for relation extraction. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S.M. (eds.) ICONIP 2017. LNCS, vol. 10638, pp. 216–227. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70139-4_22

    Chapter  Google Scholar 

  13. Chen, D., Liu, F., Du, X., Gao, R., Xu, F.: MEP-3M: a large-scale multi-modal e-commerce products dataset

    Google Scholar 

  14. Liu, Z., Shen, Y., Lakshminarasimhan, V.B., Liang, P.P., Zadeh, A., Morency, L.P.: Efficient low-rank multimodal fusion with modality-specific factors. arXiv preprint arXiv:1806.00064 (2018)

  15. Zadeh, A., Chen, M., Poria, S., Cambria, E., Morency, L.P.: Tensor fusion network for multimodal sentiment analysis. arXiv preprint arXiv:1707.07250 (2017)

Download references

Acknowledgment

This work was partially funded by Research Fund from Science and Technology on Underwater Vehicle Technology Laboratory(2021JCJQ-SYSJJ-LB06905), Water Science and Technology Project of Jiangsu Province under grant No. 2021072, 2021063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, Y., Zhou, R., Zhao, G., Zhang, W., Chen, D., Liu, F. (2022). MDF-Net: Multimodal Deep Fusion for Large-Scale Product Recognition. In: Deng, W., et al. Biometric Recognition. CCBR 2022. Lecture Notes in Computer Science, vol 13628. Springer, Cham. https://doi.org/10.1007/978-3-031-20233-9_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20233-9_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20232-2

  • Online ISBN: 978-3-031-20233-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics