Skip to main content

A Reusable Methodology for Player Clustering Using Wasserstein Autoencoders

  • Conference paper
  • First Online:
Entertainment Computing – ICEC 2022 (ICEC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13477))

Included in the following conference series:

Abstract

Identifying groups of player behavior is a crucial step in understanding the player base of a game. In this work, we use a recurrent autoencoder to create representations of players from sequential game data. We then apply two clustering algorithms–k-means and archetypal analysis–to identify groups, or clusters, of player behavior. The main contribution to this work is to determine the efficacy of the Wasserstein loss in the autoencoder, evaluate the loss’s effect on clustering, and provide a methodology that game analysts can apply to their games. We perform a quantitative and qualitative analysis of combinations of models and clustering algorithms and determine that using the Wasserstein loss results in better clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.mysingingmonsters.com.

References

  1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)

    Google Scholar 

  2. Arjovsky, M., Bottou, L.: Towards principle methods for training generative adversarial networks (2017). arXiv:1701.04862

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017). arXiv:1701.07875

  4. Boubekki, A., Kampffmeyer, M., Brefeld, U., Jenssen, R.: Joint optimization of an autoencoder for clustering and embedding. Machine Learning 110(7), 1901–1937 (2021). https://doi.org/10.1007/s10994-021-06015-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.- Theory Methods 3(1), 1–27 (1974). https://doi.org/10.1080/03610927408827101

  6. Cutler, A., Breiman, L.: Archetypal Analysis. Technometrics 36(4), 338–347 (Nov 1994). https://doi.org/10.1080/00401706.1994.10485840

  7. Davies, D.L., Bouldin, D.W.: A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1(2), 224–227 (1979). https://doi.org/10.1109/TPAMI.1979.4766909

  8. Drachen, A., Canossa, A., Yannakakis, G.N.: Player modeling using self-organization in tomb raider: underworld. In: 2009 IEEE Symposium on Computational Intelligence and Games, pp. 1–8. IEEE, Milano, Italy (2009). https://doi.org/10.1109/CIG.2009.5286500

  9. Drachen, A., Sifa, R., Bauckhage, C., Thurau, C.: Guns, swords and data: clustering of player behavior in computer games in the wild. In: 2012 IEEE Conference on Computational Intelligence and Games (CIG), pp. 163–170. IEEE, Granada, Spain (2012). https://doi.org/10.1109/CIG.2012.6374152

  10. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014), https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

  11. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved Training of Wasserstein GANs (2017). arXiv:1704.00028

  12. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Infor. Theory 28(2), 129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489

  13. McInnes, L., Healy, J., Melville, J.: UMAP: Uniform manifold approximation and projection for dimension reduction (2020). arXiv:1802.03426

  14. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F.d., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  15. Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein Auto-Encoders (2019). arXiv:1711.01558

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Katchabaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, J., Katchabaw, M. (2022). A Reusable Methodology for Player Clustering Using Wasserstein Autoencoders. In: Göbl, B., van der Spek, E., Baalsrud Hauge, J., McCall, R. (eds) Entertainment Computing – ICEC 2022. ICEC 2022. Lecture Notes in Computer Science, vol 13477. Springer, Cham. https://doi.org/10.1007/978-3-031-20212-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20212-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20211-7

  • Online ISBN: 978-3-031-20212-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics