Skip to main content

Robot Swarms Break Decision Deadlocks in Collective Perception Through Cross-Inhibition

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2022)

Abstract

We study how robot swarms can achieve a consensus on the best among a set of n possible options available in the environment. While the robots rely on local communication with one another, follow simple rules, and make estimates of the option’s qualities subject to measurement errors, the swarm as a whole is able to make accurate collective decisions. We compare the performance of two prominent decision-making algorithms that are based, respectively, on the direct-switching and the cross-inhibition models, both of which are well-suited for simplistic robots. Most studies used these models to let robots achieve consensus by solely relying on social interactions and ignored the aspect of enabling robots to self-source information from the environment. However, in order to select the best option, we deem sampling environmental information crucial for the successful performance of the task. Through robot-swarm simulations, we show that swarms programmed with the direct-switching model are only able to make consensus decisions in asymmetric environments where options have different quality values. Instead, using cross-inhibition, the robot swarm can also break decision deadlocks and reach a consensus in symmetric environments with equal quality options. We investigate the mechanistic causes of such differences and we find that the time the robots spend in a state of indecision is a key parameter to break the symmetry. This research highlights the importance of considering both social and environmental information when studying collective decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoun, A., Valentini, G., Hocquard, E., Wiandt, B., Trianni, V., Dorigo, M.: Kilogrid: a modular virtualization environment for the Kilobot robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3809–3814 (2016). https://doi.org/10.1109/IROS.2016.7759560

  2. Aust, T., Talamali, M., Dorigo, M., Hamann, H., Reina, A.: The hidden benefits of limited communication and slow sensing in collective monitoring of dynamic environments. In: Dorigo, M., et al. (eds.) Swarm Intelligence (ANTS 2022). LNCS, vol. 13491. Springer, Cham (2022)

    Google Scholar 

  3. Ballerini, M., et al.: Empirical investigation of starling flocks: a benchmark study in collective animal behaviour. Anim. Behav. 76(1), 201–215 (2008). https://doi.org/10.1016/j.anbehav.2008.02.004

    Article  Google Scholar 

  4. Bartashevich, P., Mostaghim, S.: Multi-featured collective perception with evidence theory: tackling spatial correlations. Swarm Intell. 15, 83–110 (2021). https://doi.org/10.1007/s11721-021-00192-8

    Article  Google Scholar 

  5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)

    Book  MATH  Google Scholar 

  6. Bose, T., Reina, A., Marshall, J.A.R.: Collective decision-making. Curr. Opin. Behav. Sci. 6, 30–34 (2017). https://doi.org/10.1016/j.cobeha.2017.03.004

    Article  Google Scholar 

  7. Campo, A., Nouyan, S., Birattari, M., Groß, R., Dorigo, M.: Negotiation of goal direction for cooperative transport. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 191–202. Springer, Heidelberg (2006). https://doi.org/10.1007/11839088_17

    Chapter  Google Scholar 

  8. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463 (2014)

    Article  Google Scholar 

  9. Ferrante, E., Turgut, A.E., Huepe, C., Stranieri, A., Pinciroli, C., Dorigo, M.: Self-organized flocking with a mobile robot swarm: a novel motion control method. Adapt. Behav. 20(6), 460–477 (2012). https://doi.org/10.1177/1059712312462248

    Article  Google Scholar 

  10. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.: Self-organized shortcuts in the argentine ant. Naturwissenschaften 76, 579 (1989). https://doi.org/10.1007/BF00462870

    Article  Google Scholar 

  11. Khalil, N., Miguel, M.S., Toral, R.: Zealots in the mean-field noisy voter model. Phys. Rev. E 97(1), 012310 (2018). https://doi.org/10.1103/physreve.97.012310

  12. Khaluf, Y., Pinciroli, C., Valentini, G., Hamann, H.: The impact of agent density on scalability in collective systems: noise-induced versus majority-based bistability. Swarm Intell. 11(2), 155–179 (2017). https://doi.org/10.1007/s11721-017-0137-6

    Article  Google Scholar 

  13. Lee, C., Lawry, J., Winfield, A.F.T.: Negative updating applied to the best-of-n problem with noisy qualities. Swarm Intell. (2), 111–143 (2021). https://doi.org/10.1007/s11721-021-00188-4

  14. Mobilia, M., Petersen, A., Redner, S.: On the role of zealotry in the voter model. J. Stat. Mech. Theory Exp. 2007(08), P08029 (2007). https://doi.org/10.1088/1742-5468/2007/08/p08029

    Article  MathSciNet  MATH  Google Scholar 

  15. Mobilia, M.: Does a single zealot affect an infinite group of voters? Phys. Rev. Lett. 91(2), 028701 (2003). https://doi.org/10.1103/physrevlett.91.028701

  16. Mobilia, M.: Nonlinear q-voter model with inflexible zealots. Phys. Rev. E 92(1), 012803 (2015). https://doi.org/10.1103/physreve.92.012803

  17. Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm: self-organized strategies to find your way home. Swarm Intell. 2(1), 1–23 (2008). https://doi.org/10.1007/s11721-007-0009-6

    Article  Google Scholar 

  18. Pais, D., Hogan, P.M., Schlegel, T., Franks, N.R., Leonard, N.E., Marshall, J.A.R.: A mechanism for value-sensitive decision-making. PLoS ONE 8(9), 1–9 (2013). https://doi.org/10.1371/journal.pone.0073216

    Article  Google Scholar 

  19. Pinciroli, C., Talamali, M.S., Reina, A., Marshall, J.A.R., Trianni, V.: Simulating Kilobots within ARGoS: models and experimental validation. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 176–187. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_14

    Chapter  Google Scholar 

  20. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/s11721-012-0072-5

    Article  Google Scholar 

  21. Rausch, I., Reina, A., Simoens, P., Khaluf, Y.: Coherent collective behaviour emerging from decentralised balancing of social feedback and noise. Swarm Intell. (2), 321–345 (2019). https://doi.org/10.1007/s11721-019-00173-y

  22. Reina, A., Marshall, J.A.R., Trianni, V., Bose, T.: Model of the best-of-N nest-site selection process in honeybees. Phys. Rev. E 95(5), 052411 (2017). https://doi.org/10.1103/PhysRevE.95.052411

    Article  Google Scholar 

  23. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design pattern for decentralised decision making. PLoS ONE 10(10), e0140950 (2015). https://doi.org/10.1371/journal.pone.0140950

    Article  Google Scholar 

  24. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: A low cost scalable robot system for collective behaviors. In: 2012 IEEE International Conference on Robotics and Automation. IEEE Press, Piscataway (2012). https://doi.org/10.1109/ICRA.2012.6224638

  25. Scheidler, A., Brutschy, A., Ferrante, E., Dorigo, M.: The k-unanimity rule for self-organized decision making in swarms of robots. IEEE Trans. Cybern. 46, 1175 (2016). https://doi.org/10.1109/TCYB.2015.2429118

    Article  Google Scholar 

  26. Seeley, T.D., Visscher, P.K., Schlegel, T., Hogan, P.M., Franks, N.R., Marshall, J.A.R.: Stop signals provide cross inhibition in collective decision-making by honeybee swarms. Science 335(6064), 108–111 (2012). https://doi.org/10.1126/science.1210361

    Article  Google Scholar 

  27. Sion, A., Reina, A., Birattari, M., Tuci, E.: Controlling robot swarm aggregation through a minority of informed robots. In: Dorigo, M., et al. (eds.) Swarm Intelligence (ANTS 2022). LNCS, vol. 13491. Springer, Cham (2022). https://doi.org/10.48550/arXiv.2205.03192

  28. Starnini, M., Frasca, M., Baronchelli, A.: Emergence of metapopulations and echo chambers in mobile agents. Sci. Rep. 6, 1–8 (2016). https://doi.org/10.1038/srep31834

    Article  Google Scholar 

  29. Talamali, M.S., Bose, T., Haire, M., Xu, X., Marshall, J.A.R., Reina, A.: Sophisticated collective foraging with minimalist agents: a swarm robotics test. Swarm Intell. 14(1), 25–56 (2019). https://doi.org/10.1007/s11721-019-00176-9

    Article  Google Scholar 

  30. Talamali, M.S., Saha, A., Marshall, J.A.R., Reina, A.: When less is more: robot swarms adapt better to changes with constrained communication. Sci. Robot. 6(56), eabf1416 (2021). https://doi.org/10.1126/scirobotics.abf1416

  31. Tsimring, L.S.: Noise in biology. Reports on progress in physics. Phys. Soc. 77(2), 026601 (2014). https://doi.org/10.1088/0034-4885/77/2/026601

  32. Valentini, G., et al.: Kilogrid: a novel experimental environment for the kilobot robot. Swarm Intell. 12(3), 245–266 (2018)

    Article  Google Scholar 

  33. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of environmental features in a robot swarm. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 65–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7_6

    Chapter  Google Scholar 

  34. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms: Formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017). https://doi.org/10.3389/frobt.2017.00009

    Article  Google Scholar 

  35. Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision making: the weighted voter model. In: Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2014, pp. 45–52. IFAAMAS, Richland (2014)

    Google Scholar 

  36. Wahby, M., Petzold, J., Eschke, C., Schmickl, T., Hamann, H.: Collective change detection: adaptivity to dynamic swarm densities and light conditions in robot swarms. In: Artificial Life Conference Proceedings, pp. 642–649. MIT Press, Cambridge (2019). https://doi.org/10.1162/isal_00233

Download references

Acknowledgements

The authors thank Till Aust and Jonas Kuckling for the technical support on simulating the Kilogrid and running simulations on the HPC. This work was supported by Service Public de Wallonie Recherche under grant n\(^\circ \) 2010235 - ARIAC by DigitalWallonia4.AI. M. Dorigo and A. Reina acknowledge support from the Belgian F.R.S.-FNRS, of which they are Research Director and Chargé de Recherches, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raina Zakir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zakir, R., Dorigo, M., Reina, A. (2022). Robot Swarms Break Decision Deadlocks in Collective Perception Through Cross-Inhibition. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2022. Lecture Notes in Computer Science, vol 13491. Springer, Cham. https://doi.org/10.1007/978-3-031-20176-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20176-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20175-2

  • Online ISBN: 978-3-031-20176-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics