Skip to main content

Real-Time Coordination of a Foraging Robot Swarm Using Blockchain Smart Contracts

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2022)

Abstract

We present a novel control scheme for robot swarms that exploits the computation layer of a blockchain to coordinate the actions of individual robots in real-time. To accomplish this, we deploy a blockchain smart contract that acts as a “decentralized supervisor” during a swarm foraging task. Our results show that using blockchain-based global coordination rules can improve the foraging behavior of robot swarms, while maintaining a decentralized, scalable, and democratic system in which every robot contributes homogeneously to the decision-making process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aswale, A., López, A., Ammartayakun, A., Pinciroli, C.: Hacking the colony: on the disruptive effect of misleading pheromone and how to defend against it. In: Proceedings of the 21st International Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2022), pp. 27–34. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2022)

    Google Scholar 

  2. Biesmeijer, J.C., de Vries, H.: Exploration and exploitation of food sources by social insect colonies: a revision of the scout-recruit concept. Behav. Ecol. Sociobiol. 49(2), 89–99 (2001). https://doi.org/10.1007/s002650000289

    Article  Google Scholar 

  3. Buterin, V.: A next-generation smart contract and decentralized application platform. Technical report, Ethereum Foundation (2014). https://github.com/ethereum/wiki/wiki/White-Paper. Accessed 18 July 2019

  4. Campo, A., et al.: Artificial pheromone for path selection by a foraging swarm of robots. Biol. Cybern. 103(5), 339–352 (2010). https://doi.org/10.1007/s00422-010-0402-x

    Article  MATH  Google Scholar 

  5. Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing exploratory pattern of the argentine ant. J. Insect Behav. 3(2), 159–168 (1990). https://doi.org/10.1007/BF01417909

    Article  Google Scholar 

  6. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463 (2014)

    Article  Google Scholar 

  7. Ethereum Foundation: Ethereum project (2017). https://ethereum.org

  8. Ethereum Foundation: ethereum/web3.py: A Python interface for interacting with the Ethereum blockchain and ecosystem (2022). https://github.com/ethereum/web3.py

  9. Fernandes, M., Alexandre, L.A.: Robotchain: using tezos technology for robot event management. Ledger 4 (2019). https://doi.org/10.5195/ledger.2019.175. https://www.ledgerjournal.org/ojs/ledger/article/view/175

  10. Font Llenas, A., Talamali, M.S., Xu, X., Marshall, J.A.R., Reina, A.: Quality-sensitive foraging by a robot swarm through virtual pheromone trails. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 135–149. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_11

    Chapter  Google Scholar 

  11. Hasselmann, K., Parravicini, A., Pacheco, A., Strobel, V.: KenN7/argos-python: python wrapper for ARGoS3 simulator (2022). https://github.com/KenN7/argos-python

  12. Hoff, N., Wood, R., Nagpal, R.: Distributed colony-level algorithm switching for robot swarm foraging. In: Martinoli, A., et al. (eds.) Distributed Autonomous Robotic Systems, vol. 83, pp. 417–430. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32723-0_30

    Chapter  Google Scholar 

  13. Houston, A.I., McNamara, J.M.: A general theory of central place foraging for single-prey loaders. Theor. Popul. Biol. 28(3), 233–262 (1985). https://doi.org/10.1016/0040-5809(85)90029-2

    Article  MathSciNet  MATH  Google Scholar 

  14. Merkel, D.: Docker: lightweight Linux containers for consistent development and deployment. Linux J. 2014(239) (2014)

    Google Scholar 

  15. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In: Gonçalves, P.J.S., Torres, P.J.D., Alves, C.M.O. (eds.) Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1, pp. 59–65. IPCB: Instituto Politécnico de Castelo Branco (2009)

    Google Scholar 

  16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf

  17. Nouyan, S., Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-organized robot colonies. IEEE Trans. Evol. Comput. 13(4), 695–711 (2009). https://doi.org/10.1109/TEVC.2008.2011746

    Article  Google Scholar 

  18. Pacheco, A., Strobel, V.: teksander/geth-argos at ANTS2022. https://github.com/teksander/geth-argos

  19. Pacheco, A., Strobel, V., Dorigo, M.: A blockchain-controlled physical robot swarm communicating via an ad-hoc network. In: Dorigo, M., et al. (eds.) ANTS 2020. LNCS, vol. 12421, pp. 3–15. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60376-2_1

    Chapter  Google Scholar 

  20. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/s11721-012-0072-5

    Article  Google Scholar 

  21. Pitonakova, L., Crowder, R., Bullock, S.: Understanding the role of recruitment in collective robot foraging. In: Proceedings of the 14th International Conference on the Synthesis and Simulation of Living Systems (ALIFE 2014), pp. 264–271 (2014). https://doi.org/10.7551/978-0-262-32621-6-ch043

  22. Pitonakova, L., Crowder, R., Bullock, S.: The information-cost-reward framework for understanding robot swarm foraging. Swarm Intell. 12(1), 71–96 (2017). https://doi.org/10.1007/s11721-017-0148-3

    Article  Google Scholar 

  23. Reina, A.: Robot teams stay safe with blockchains. Nat. Mach. Intell. 2, 240–241 (2020). https://doi.org/10.1038/s42256-020-0178-1

    Article  Google Scholar 

  24. Salman, M., Garzón Ramos, D., Hasselmann, K., Birattari, M.: Phormica: photochromic pheromone release and detection system for stigmergic coordination in robot swarms. Front. Robot. AI 7 (2020). https://www.frontiersin.org/article/10.3389/frobt.2020.591402

  25. Seeley, T.D.: Division of labor between scouts and recruits in honeybee foraging. Behav. Ecol. Sociobiol. 12(3), 253–259 (1983). https://www.jstor.org/stable/4599586

  26. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing Byzantine robots via blockchain technology in a swarm robotics collective decision making scenario. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2018), pp. 541–549. International Foundation for Autonomous Agents and Multiagent Systems, Richland (2018)

    Google Scholar 

  27. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Blockchain technology secures robot swarms: a comparison of consensus protocols and their resilience to Byzantine robots. Front. Robot. AI 7, 54 (2020). https://doi.org/10.3389/frobt.2020.00054

    Article  Google Scholar 

  28. Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.): ANTS 2018. LNCS, vol. 11172. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7

    Book  Google Scholar 

  29. Szilágyi, P.: EIP 225: clique proof-of-authority consensus protocol (2017). https://github.com/ethereum/EIPs/issues/225. Accessed 10 May 2020

  30. Wilson, E.O.: Sociobiology: The New Synthesis, Twenty-Fifth Anniversary Edition. Harvard University Press, Cambridge (2000)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the program of Concerted Research Actions (ARC) of the Université libre de Bruxelles and by the Brussels-Capital Region via the Brussels International contract n. BI-MB-531-004021. A. Reina and M. Dorigo acknowledge support from the Belgian F.R.S.-FNRS, of which they are Chargé de Recherches and Research Director, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Pacheco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pacheco, A., Strobel, V., Reina, A., Dorigo, M. (2022). Real-Time Coordination of a Foraging Robot Swarm Using Blockchain Smart Contracts. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2022. Lecture Notes in Computer Science, vol 13491. Springer, Cham. https://doi.org/10.1007/978-3-031-20176-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20176-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20175-2

  • Online ISBN: 978-3-031-20176-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics