Skip to main content

Removal of Heavy Metals from Sewage Sludge by Using Humic Substances

  • Conference paper
  • First Online:
Smart Technologies in Urban Engineering (STUE 2022)

Abstract

The paper discusses the issue of extracting heavy metals from domestic wastewater sludge as fertilizers for agricultural purposes. Currently, the bulk of the formed precipitation is not utilized due to the presence of toxic chemicals in their composition, mainly heavy metals. This is due to the fact that industrial wastewater enters the city sewer network after insufficient treatment. Based on the foregoing, the development of progressive technologies and methods for removing heavy metals from urban wastewater sludge is an extremely urgent and timely task, the successful solution of which will significantly reduce the level of negative impact of this sludge on the environment. A technological scheme for the extraction of heavy metals from domestic wastewater sludge has been developed; the optimal modes of the technological process are given. It has been established that it is advisable to use organic flocculants to intensify the processes of thickening and dehydration of urban wastewater sludge. The most effective are cationic flocculants. Their use intensifies the process of sludge dewatering both in sludge beds and in mechanical dewatering devices – filter presses and centrifuges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vystavna, Y., Zaichenko, L., Klimenko, N., Rätsep, R.: Trace metals transfer during vine cultivation and winemaking processes. J. Sci. Food Agric. 97(13), 4520–4525 (2017). https://doi.org/10.1002/jsfa.8318

    Article  Google Scholar 

  2. Vergeles, Y., Butenko, N., Ishchenko, A., et al.: Formation and properties of sediments in constructed wetlands for treatment of domestic wastewater. Urban Water J. 13(3), 293–301 (2016). https://doi.org/10.1080/1573062X.2014.993178

    Article  Google Scholar 

  3. Marchand, L., Nsanganwimana, F., Cook, B.J., et al.: Trace element transfer from soil to leaves of macrophytes along the Jalle d’Eysines River, France and their potential use as contamination biomonitors. Ecol. Ind. 46, 425–437 (2014). https://doi.org/10.1016/j.ecolind.2014.07.011

    Article  Google Scholar 

  4. Vystavna, Y., Huneau, F., Motelica-Heino, M., et al.: Monitoring and flux determination of trace metals in rivers of the Seversky Donets basin (Ukraine) using DGT passive samplers. Environ. Earth Sci. 65(6), 1715–1725 (2012). https://doi.org/10.1007/s12665-011-1151-4

    Article  Google Scholar 

  5. Papagiannis, F., Gazzola, P., Burak, O., Pokutsa, I.: Overhauls in water supply systems in Ukraine: a hydro-economic model of socially responsible planning and cost management. J. Clean. Prod. 183, 358–369 (2018). https://doi.org/10.1016/j.jclepro.2018.02.156

    Article  Google Scholar 

  6. Vystavna, Y., Yakovlev, V., Diadin, D., Vergeles, Y., Stolberg, F.: Hydrochemical characteristics and water quality assessment of surface and ground waters in the transboundary (Russia/Ukraine) Seversky Donets basin. Environ. Earth Sci. 74(1), 585–596 (2015). https://doi.org/10.1007/s12665-015-4060-0

    Article  Google Scholar 

  7. Camargo, F.P., Sérgio Tonello, P., dos Santos, A.C.A., Duarte, I.C.S.: Removal of toxic metals from sewage sludge through chemical, physical, and biological treatments—a review. Water Air Soil Pollut. 227(12), 1–11 (2016). https://doi.org/10.1007/s11270-016-3141-3

    Article  Google Scholar 

  8. Reddy, G.K., Yarrakula, K., Lakshmi, U.V.: Reducing agents enhanced electrokinetic soil remediation (EKSR) for heavy metal contaminated soil. Iran. J. Chem. Chem. Eng. (Int. Engl. Ed.) 38(3), 183–199 (2019)

    Google Scholar 

  9. Cieślik, B.M., Świerczek, L., Konieczka, P.: Analytical and legislative challenges of sewage sludge processing and management. Monatshefte für Chemie – Chem. Mon. 149(9), 1635–1645 (2018). https://doi.org/10.1007/s00706-018-2255-2

    Article  Google Scholar 

  10. Hudcová, H., Vymazal, J., Rozkošný, M.: Present restrictions of sewage sludge application in agriculture within the European Union. Soil Water Res. 14(2), 104–120 (2019). https://doi.org/10.17221/36/2018-SWR

  11. Meng, X.Z., Venkatesan, A.K., Ni, Y.L., et al.: Organic contaminants in Chinese sewage sludge: a meta-analysis of the literature of the past 30 years. Environ. Sci. Technol. 50(11), 5454–5466 (2016). https://doi.org/10.1021/acs.est.5b05583

    Article  Google Scholar 

  12. Dushkin, S.S., Galkina, O.P.: More effective clarification of circulating water at coke plants. Coke Chem. 62(10), 474–480 (2019). https://doi.org/10.3103/S1068364X19100041

    Article  Google Scholar 

  13. Hamdi, H., Hechmi, S., Khelil, M.N., et al.: Repetitive land application of urban sewage sludge: effect of amendment rates and soil texture on fertility and degradation parameters. CATENA 172, 11–20 (2019). https://doi.org/10.1016/j.catena.2018.08.015

    Article  Google Scholar 

  14. Dushkin, S., Shevchenko, T.: Applying a modified aluminum sulfate solution in the processes of drinking water preparation. East.-Eur. J. Enterp. Technol. 4(10), 26–36 (2020). https://doi.org/10.15587/1729-4061.2020.210096

  15. Skinner, S.J., Studer, L.J., Dixon, D.R., et al.: Quantification of wastewater sludge dewatering. Water Res. 82, 2–13 (2015). https://doi.org/10.1016/j.watres.2015.04.045

    Article  Google Scholar 

  16. Lamastra, L., Suciu, N.A., Trevisan, M.: Sewage sludge for sustainable agriculture: contaminants’ contents and potential use as fertilizer. Chem. Biol. Technol. Agric. 5(1), 1–6 (2018). https://doi.org/10.1186/s40538-018-0122-3

    Article  Google Scholar 

  17. Yesil, H., Molaey, R., Calli, B., Tugtas, A.E.: Removal and recovery of heavy metals from sewage sludge via three-stage integrated process. Chemosphere 280, 130650 (2021). https://doi.org/10.1016/j.chemosphere.2021.130650

    Article  Google Scholar 

  18. Adeolu, A.T., Adewoye, S.O.: Efficacy of cassava peel extracts for the removal of heavy metals from hospital sewage sludge in Nigeria. J. Health Pollut. 9(23), 190908 (2019). https://doi.org/10.5696/2156-9614-9.23.190908

    Article  Google Scholar 

  19. Sutradhar, I., et al.: Introducing urine-enriched biochar-based fertilizer for vegetable production: acceptability and results from rural Bangladesh. Environ. Dev. Sustain. 23(9), 12954–12975 (2021). https://doi.org/10.1007/s10668-020-01194-y

    Article  MathSciNet  Google Scholar 

  20. Kobierski, M., Kondratowicz-Maciejewska, K., Banach-Szott, M., Wojewódzki, P., Peñas Castejón, J.M.: Humic substances and aggregate stability in rhizospheric and non-rhizospheric soil. J. Soils Sediments 18(8), 2777–2789 (2018). https://doi.org/10.1007/s11368-018-1935-1

    Article  Google Scholar 

  21. Śliwińska, A., Drab, M.: Changes in the content of humic substances, reaction and sorption properties occurring in reclaimed land in post-mining areas. Pol. J. Soil Sci. 48(2), 189 (2016). https://doi.org/10.17951/pjss.2015.48.2.189

  22. Keeley, J., Jarvis, P., Judd, S.J.: Coagulant recovery from water treatment residuals: a review of applicable technologies. Crit. Rev. Environ. Sci. Technol. 44(24), 2675–2719 (2014). https://doi.org/10.1080/10643389.2013.829766

    Article  Google Scholar 

  23. Dushkin, S.S., Martynov, S., Dushkin, S.S.: Intensification of the work of contact clarifiers during the drinking water preparation. J. Water Land Dev. 41, 55–60 (2019). https://doi.org/10.2478/jwld-2019-0027

    Article  Google Scholar 

  24. Matsak, A., Tsytlishvili, K., Rybalova, O., et al.: Method of agricultural sewage water purification at troughs and a biosorption bioreactor. East.-Eur. J. Enterp. Technol. 5(10), 15–24 (2018). https://doi.org/10.15587/1729-4061.2018.144138

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Shevchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shevchenko, T., Galkina, O., Martynov, S., Dushkin, S. (2023). Removal of Heavy Metals from Sewage Sludge by Using Humic Substances. In: Arsenyeva, O., Romanova, T., Sukhonos, M., Tsegelnyk, Y. (eds) Smart Technologies in Urban Engineering. STUE 2022. Lecture Notes in Networks and Systems, vol 536. Springer, Cham. https://doi.org/10.1007/978-3-031-20141-7_32

Download citation

Publish with us

Policies and ethics