Skip to main content

Butterfly Valve PID-Controller for Application in Individual Heating Substations

  • Conference paper
  • First Online:
Smart Technologies in Urban Engineering (STUE 2022)

Abstract

The reduction of the fossil fuels consumption is of great importance nowadays. The heating of residential apartments of domestic houses and hot water supply in the modern metapolicies arises challenges in application of modern technologies. The necessity for reliable regulation of temperatures inside the apartments requires quick-respond and accurate control techniques for the implied equipment. In the present work, the parametric model predictive control technique for water flowrate control of the butterfly type valve used for temperature and flowrate regulation in the individual heat substation of centralized heating system is proposed. The model improves the non-linear characteristics resulting in quality of flow control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jagatheesan, K., Anand, B., Samanta, S., et al.: Design of a proportional-integral-derivative controller for an automatic generation control of multi-area power thermal systems using firefly algorithm. IEEE/CAA J. Automatica Sinica 6(2), 503–515 (2017). https://doi.org/10.1109/JAS.2017.7510436

    Article  Google Scholar 

  2. Garcíadealva, Y., Best, R., Gómez, V.H., et al.: A cascade proportional integral derivative control for a plate-heat-exchanger-based solar absorption cooling system. Energies 14(13), 4058 (2021). https://doi.org/10.3390/en14134058

    Article  Google Scholar 

  3. Mork, M., Xhonneux, A., Müller, D.: Nonlinear distributed model predictive control for multi-zone building energy systems. Energy Build. 264, 112066 (2022). https://doi.org/10.1016/j.enbuild.2022.112066

    Article  Google Scholar 

  4. Redko, I., Ujma, A., Redko, A., et al.: Energy efficiency of buildings in the cities of Ukraine under the conditions of sustainable development of centralized heat supply systems. Energy Build. 247, 110947 (2021). https://doi.org/10.1016/j.enbuild.2021.110947

    Article  Google Scholar 

  5. Lastovets, N., Kosonen, R., Mustakallio, P., et al.: Modelling of room air temperature profile with displacement ventilation. Int. J. Vent. 19(2), 112–126 (2020). https://doi.org/10.1080/14733315.2019.1579486

    Article  Google Scholar 

  6. Meng, Z., Junqi, Y.U., Anjun, Z.: Distributed model predictive control for central heating of high-rise residential buildings. J. Asian Archit. Build. Eng., 1–13 (2022). https://doi.org/10.1080/13467581.2021.1987245

  7. Ahmad, B., Prajitno, P.: Design of neural network and PLC-based water flow controller. J. Phys. Conf. Ser. 1528, 012065 (2020). https://doi.org/10.1088/1742-6596/1528/1/012065

    Article  Google Scholar 

  8. Gao, B., Zhang, L., Tian, Y., Zhou, M.: Analysis on energy saving measures of heat exchange station in central heating system. Procedia Eng. 205, 581–587 (2017). https://doi.org/10.1016/j.proeng.2017.10.422

    Article  Google Scholar 

  9. Kapustenko, P., Dobromyslova, O., Dobromyslov, O., et al.: Control of plate heat exchanger outlet temperature using butterfly valve and parametric model predictive control technique. Chem. Eng. Trans. 18, 827–832 (2009). https://doi.org/10.3303/CET0918135

    Article  Google Scholar 

  10. Klemes, J.J., Arsenyeva, O., Kapustenko, P., Tovazhnyanskyy, L.: Compact Heat Exchangers for Energy Transfer Intensification: Low Grade Heat and Fouling Mitigation. CRC Press, Boca Raton (2015). https://doi.org/10.1201/b18862

  11. Arsenyeva, O., Tran, J., Piper, M., Kenig, E.: An approach for pillow plate heat exchangers design for single-phase applications. Appl. Therm. Eng. 147, 579–591 (2019). https://doi.org/10.1016/j.applthermaleng.2018.08.083

    Article  Google Scholar 

  12. Buffa, S., Fouladfar, M.H., Franchini, G., et al.: Advanced control and fault detection strategies for district heating and cooling systems – a review. Appl. Sci. 11(1), 455 (2021). https://doi.org/10.3390/app11010455

    Article  Google Scholar 

  13. Zeh, R., Ohlsen, B., Philipp, D., et al.: Large-scale geothermal collector systems for 5th generation district heating and cooling networks. Sustainability 13(11), 6035 (2021). https://doi.org/10.3390/su13116035

    Article  Google Scholar 

Download references

Acknowledgement

This research has been supported by the EU project “Sustainable Process Integration Laboratory – SPIL”, project No. CZ.02.1.01/0.0/0.0/15_003/0000456 funded by EU “CZ Operational Programme Research, Development and Education”, Priority 1: Strengthening capacity for quality research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Arsenyeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arsenyeva, O., Klemeš, J.J., Varbanov, P.S., Kapustenko, P. (2023). Butterfly Valve PID-Controller for Application in Individual Heating Substations. In: Arsenyeva, O., Romanova, T., Sukhonos, M., Tsegelnyk, Y. (eds) Smart Technologies in Urban Engineering. STUE 2022. Lecture Notes in Networks and Systems, vol 536. Springer, Cham. https://doi.org/10.1007/978-3-031-20141-7_29

Download citation

Publish with us

Policies and ethics