Abstract
Some previous state-of-the-art research on analyzing point cloud rely on the voxelization quantization because it keeps the better spatial locality and geometry. However, these 3D voxelization methods and subsequent 3D convolution networks often bring the large computational overhead and GPU occupation. A straightforward alternative is to flatten 3D voxelization into 2D structure or utilize the pillar representation to perform the dimension reduction, while all of them would inevitably alter the spatial locality and 3D geometric information. In this way, we propose the HilbertNet to maintain the locality advantage of voxel-based methods while significantly reducing the computational cost. Here the key component is a new flattening mechanism based on Hilbert curve, which is a famous locality and geometry preserving function. Namely, if flattening 3D voxels using Hilbert curve encoding, the resulting structure will have similar spatial topology compared with original voxels. Through the Hilbert flattening, we can not only use 2D convolution (more lightweight than 3D convolution) to process voxels, but also incorporate technologies suitable in 2D space, such as transformer, to boost the performance. Our proposed HilbertNet achieves state-of-the-art performance on ShapeNet, ModelNet40 and S3DIS datasets with smaller cost and GPU occupation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese, S.: 3D semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE Conference on Computer vision and Pattern Recognition, pp. 1534–1543 (2016)
Balkić, Z., Šoštarić, D., Horvat, G.: GeoHash and UUID identifier for multi-agent systems. In: Jezic, G., Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012. LNCS (LNAI), vol. 7327, pp. 290–298. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30947-2_33
Bauman, K.E.: The dilation factor of the peano-hilbert curve. Math. Notes 80(5), 609–620 (2006)
Chang, A.X., et al.: Shapenet: an information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)
Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: A 2 Nets: double attention networks. In: Proceedings of the NIPS, pp. 352–361 (2018)
Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3075–3084 (2019)
Cong, P., Zhu, X., Ma, Y.: Input-output balanced framework for long-tailed lidar semantic segmentation. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2021)
Esteves, C., Xu, Y., Allen-Blanchette, C., Daniilidis, K.: Equivariant multi-view networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1568–1577 (2019)
Faloutsos, C.: Multiattribute hashing using gray codes. In: Proceedings of the 1986 ACM SIGMOD International Conference on Management of Data, pp. 227–238 (1986)
Feng, Y., Zhang, Z., Zhao, X., Ji, R., Gao, Y.: GVCNN: group-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 264–272 (2018)
Graham, B., van der Maaten, L.: Submanifold sparse convolutional networks. arXiv preprint arXiv:1706.01307 (2017)
Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: PCT: point cloud transformer. arXiv preprint arXiv:2012.09688 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the CVPR, pp. 770–778 (2016)
Hilbert, D.: Über die stetige abbildung einer linie auf ein flächenstück. In: Dritter Band: Analysis\(\cdot \) Grundlagen der Mathematik\(\cdot \) Physik Verschiedenes, pp. 1–2. Springer, Heidelberg (1935). https://doi.org/10.1007/978-3-662-38452-7_1
Hou, Y., Zhu, X., Ma, Y., Loy, C.C., Li, Y.: Point-to-voxel knowledge distillation for lidar semantic segmentation. ArXiv:abs/2206.02099 (2022)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the CVPR, pp. 7132–7141 (2018)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the ICLR (2015)
Klokov, R., Lempitsky, V.: Escape from cells: deep KD-networks for the recognition of 3D point cloud models. In: ICCV, pp. 863–872 (2017)
Li, J., Chen, B.M., Lee, G.H.: SO-Net: self-organizing network for point cloud analysis. In: Proceedings of the CVPR (2018)
Li, J., Chen, B.M., Lee, G.H.: So-net: self-organizing network for point cloud analysis. In: CVPR, pp. 9397–9406 (2018)
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on X-transformed points. In: Proceedings of the NIPS, pp. 820–830 (2018)
Liang, J.Y., Chen, C.S., Huang, C.H., Liu, L.: Lossless compression of medical images using hilbert space-filling curves. Comput. Med. Imaging Graph. 32(3), 174–182 (2008)
Lin, Z.H., Huang, S.Y., Wang, Y.C.F.: Convolution in the cloud: learning deformable kernels in 3D graph convolution networks for point cloud analysis. In: CVPR, pp. 1800–1809 (2020)
Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel CNN for efficient 3D deep learning. arXiv preprint arXiv:1907.03739 (2019)
Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: fast and accurate lidar semantic segmentation. In: IROS, pp. 4213–4220. IEEE (2019)
Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
Mokbel, M.F., Aref, W.G., Kamel, I.: Analysis of multi-dimensional space-filling curves. GeoInformatica 7(3), 179–209 (2003)
Orenstein, J.A.: Spatial query processing in an object-oriented database system. In: Proceedings of the 1986 ACM SIGMOD International Conference on Management of Data, pp. 326–336 (1986)
Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Workshop (2017)
Pumarola, A., Popov, S., Moreno-Noguer, F., Ferrari, V.: C-flow: conditional generative flow models for images and 3D point clouds. In: CVPR, pp. 7949–7958 (2020)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: CVPR, pp. 652–660 (2017)
Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5648–5656 (2016)
Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3D data. In: CVPR, pp. 5648–5656 (2016)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)
Sagan, H.: Space-Filling Curves. Springer, New York (2012)
Samet, H.: Applications of spatial data structures: computer graphics, image processing, and GIS. Addison-Wesley Longman Publishing Co., Inc. (1990)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of the ICLR, pp. 1–14 (2015)
Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: ICCV, pp. 945–953 (2015)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the CVPR, pp. 1–9 (2015)
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: ICCV, pp. 6411–6420 (2019)
Wang, J., Shan, J.: Space filling curve based point clouds index. In: Proceedings of the 8th International Conference on GeoComputation, pp. 551–562. Citeseer (2005)
Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-CNN: octree-based convolutional neural networks for 3d shape analysis. ACM Trans. Graphics (TOG) 36(4), 1–11 (2017)
Wang, S., Suo, S., Ma, W.C., Pokrovsky, A., Urtasun, R.: Deep parametric continuous convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2589–2597 (2018)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the CVPR, pp. 7794–7803 (2018)
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. TOG 38(5), 1–12 (2019)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Wu, B., Wan, A., Yue, X., Keutzer, K.: SqueezeSeg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D lidar point cloud. In: ICRA, pp. 1887–1893. IEEE (2018)
Wu, W., Qi, Z., Fuxin, L.: Pointconv: deep convolutional networks on 3D point clouds. In: CVPR, pp. 9621–9630 (2019)
Wu, Z., et al.: 3D shapenets: a deep representation for volumetric shapes. In: CVPR, pp. 1912–1920 (2015)
Xiang, T., Zhang, C., Song, Y., Yu, J., Cai, W.: Walk in the cloud: learning curves for point clouds shape analysis. arXiv preprint arXiv:2105.01288 (2021)
Xu, C., et al.: Image2point: 3D point-cloud understanding with pretrained 2D convnets. arXiv preprint arXiv:2106.04180 (2021)
Xu, Q., Sun, X., Wu, C.Y., Wang, P., Neumann, U.: Grid-GCN for fast and scalable point cloud learning. In: CVPR, pp. 5661–5670 (2020)
Yan, X., Zheng, C., Li, Z., Wang, S., Cui, S.: PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling. In: CVPR, pp. 5589–5598 (2020)
Ye, M., Xu, S., Cao, T., Chen, Q.: DRINet: a dual-representation iterative learning network for point cloud segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7447–7456 (2021)
Zhang, S., He, X., Yan, S.: LatentGNN: learning efficient non-local relations for visual recognition. In: Proceedings of the ICML, pp. 7374–7383 (2019)
Zhang, Y., et al.: PolarNet: an improved grid representation for online lidar point clouds semantic segmentation. In: CVPR, pp. 9601–9610 (2020)
Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)
Zhao, L., Zhou, H., Zhu, X., Song, X., Li, H., Tao, W.: Lif-seg: lidar and camera image fusion for 3D lidar semantic segmentation. ArXiv abs/2108.07511 (2021)
Zhao, Q., et al.: Rethinking the zigzag flattening for image reading. arXiv preprint arXiv:2202.10240 (2022)
Zhou, H., et al.: Cylinder3D: an effective 3d framework for driving-scene lidar semantic segmentation. arXiv preprint arXiv:2008.01550 (2020)
Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3d object detection. In: CVPR, pp. 4490–4499 (2018)
Zhu, X., et al.: Cylindrical and asymmetrical 3D convolution networks for lidar-based perception. IEEE Trans. Pattern Anal. Mach. Intell. 44, 6807–6822 (2021)
Zhu, X., et al.: Cylindrical and asymmetrical 3D convolution networks for lidar segmentation. In: CVPR, pp. 9934–9943 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, W., Zhu, X., Chen, G., Yu, B. (2022). Efficient Point Cloud Analysis Using Hilbert Curve. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13662. Springer, Cham. https://doi.org/10.1007/978-3-031-20086-1_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-20086-1_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20085-4
Online ISBN: 978-3-031-20086-1
eBook Packages: Computer ScienceComputer Science (R0)