Skip to main content

Efficient Point Cloud Analysis Using Hilbert Curve

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13662))

Included in the following conference series:

Abstract

Some previous state-of-the-art research on analyzing point cloud rely on the voxelization quantization because it keeps the better spatial locality and geometry. However, these 3D voxelization methods and subsequent 3D convolution networks often bring the large computational overhead and GPU occupation. A straightforward alternative is to flatten 3D voxelization into 2D structure or utilize the pillar representation to perform the dimension reduction, while all of them would inevitably alter the spatial locality and 3D geometric information. In this way, we propose the HilbertNet to maintain the locality advantage of voxel-based methods while significantly reducing the computational cost. Here the key component is a new flattening mechanism based on Hilbert curve, which is a famous locality and geometry preserving function. Namely, if flattening 3D voxels using Hilbert curve encoding, the resulting structure will have similar spatial topology compared with original voxels. Through the Hilbert flattening, we can not only use 2D convolution (more lightweight than 3D convolution) to process voxels, but also incorporate technologies suitable in 2D space, such as transformer, to boost the performance. Our proposed HilbertNet achieves state-of-the-art performance on ShapeNet, ModelNet40 and S3DIS datasets with smaller cost and GPU occupation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese, S.: 3D semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE Conference on Computer vision and Pattern Recognition, pp. 1534–1543 (2016)

    Google Scholar 

  2. Balkić, Z., Šoštarić, D., Horvat, G.: GeoHash and UUID identifier for multi-agent systems. In: Jezic, G., Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012. LNCS (LNAI), vol. 7327, pp. 290–298. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30947-2_33

    Chapter  Google Scholar 

  3. Bauman, K.E.: The dilation factor of the peano-hilbert curve. Math. Notes 80(5), 609–620 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, A.X., et al.: Shapenet: an information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)

  5. Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: A 2 Nets: double attention networks. In: Proceedings of the NIPS, pp. 352–361 (2018)

    Google Scholar 

  6. Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3075–3084 (2019)

    Google Scholar 

  7. Cong, P., Zhu, X., Ma, Y.: Input-output balanced framework for long-tailed lidar semantic segmentation. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2021)

    Google Scholar 

  8. Esteves, C., Xu, Y., Allen-Blanchette, C., Daniilidis, K.: Equivariant multi-view networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1568–1577 (2019)

    Google Scholar 

  9. Faloutsos, C.: Multiattribute hashing using gray codes. In: Proceedings of the 1986 ACM SIGMOD International Conference on Management of Data, pp. 227–238 (1986)

    Google Scholar 

  10. Feng, Y., Zhang, Z., Zhao, X., Ji, R., Gao, Y.: GVCNN: group-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 264–272 (2018)

    Google Scholar 

  11. Graham, B., van der Maaten, L.: Submanifold sparse convolutional networks. arXiv preprint arXiv:1706.01307 (2017)

  12. Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: PCT: point cloud transformer. arXiv preprint arXiv:2012.09688 (2020)

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the CVPR, pp. 770–778 (2016)

    Google Scholar 

  14. Hilbert, D.: Über die stetige abbildung einer linie auf ein flächenstück. In: Dritter Band: Analysis\(\cdot \) Grundlagen der Mathematik\(\cdot \) Physik Verschiedenes, pp. 1–2. Springer, Heidelberg (1935). https://doi.org/10.1007/978-3-662-38452-7_1

  15. Hou, Y., Zhu, X., Ma, Y., Loy, C.C., Li, Y.: Point-to-voxel knowledge distillation for lidar semantic segmentation. ArXiv:abs/2206.02099 (2022)

  16. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the ICLR (2015)

    Google Scholar 

  18. Klokov, R., Lempitsky, V.: Escape from cells: deep KD-networks for the recognition of 3D point cloud models. In: ICCV, pp. 863–872 (2017)

    Google Scholar 

  19. Li, J., Chen, B.M., Lee, G.H.: SO-Net: self-organizing network for point cloud analysis. In: Proceedings of the CVPR (2018)

    Google Scholar 

  20. Li, J., Chen, B.M., Lee, G.H.: So-net: self-organizing network for point cloud analysis. In: CVPR, pp. 9397–9406 (2018)

    Google Scholar 

  21. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on X-transformed points. In: Proceedings of the NIPS, pp. 820–830 (2018)

    Google Scholar 

  22. Liang, J.Y., Chen, C.S., Huang, C.H., Liu, L.: Lossless compression of medical images using hilbert space-filling curves. Comput. Med. Imaging Graph. 32(3), 174–182 (2008)

    Article  Google Scholar 

  23. Lin, Z.H., Huang, S.Y., Wang, Y.C.F.: Convolution in the cloud: learning deformable kernels in 3D graph convolution networks for point cloud analysis. In: CVPR, pp. 1800–1809 (2020)

    Google Scholar 

  24. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel CNN for efficient 3D deep learning. arXiv preprint arXiv:1907.03739 (2019)

  25. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: fast and accurate lidar semantic segmentation. In: IROS, pp. 4213–4220. IEEE (2019)

    Google Scholar 

  26. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  27. Mokbel, M.F., Aref, W.G., Kamel, I.: Analysis of multi-dimensional space-filling curves. GeoInformatica 7(3), 179–209 (2003)

    Article  Google Scholar 

  28. Orenstein, J.A.: Spatial query processing in an object-oriented database system. In: Proceedings of the 1986 ACM SIGMOD International Conference on Management of Data, pp. 326–336 (1986)

    Google Scholar 

  29. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Workshop (2017)

    Google Scholar 

  30. Pumarola, A., Popov, S., Moreno-Noguer, F., Ferrari, V.: C-flow: conditional generative flow models for images and 3D point clouds. In: CVPR, pp. 7949–7958 (2020)

    Google Scholar 

  31. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: CVPR, pp. 652–660 (2017)

    Google Scholar 

  32. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5648–5656 (2016)

    Google Scholar 

  33. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3D data. In: CVPR, pp. 5648–5656 (2016)

    Google Scholar 

  34. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)

  35. Sagan, H.: Space-Filling Curves. Springer, New York (2012)

    MATH  Google Scholar 

  36. Samet, H.: Applications of spatial data structures: computer graphics, image processing, and GIS. Addison-Wesley Longman Publishing Co., Inc. (1990)

    Google Scholar 

  37. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of the ICLR, pp. 1–14 (2015)

    Google Scholar 

  38. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: ICCV, pp. 945–953 (2015)

    Google Scholar 

  39. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the CVPR, pp. 1–9 (2015)

    Google Scholar 

  40. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: ICCV, pp. 6411–6420 (2019)

    Google Scholar 

  41. Wang, J., Shan, J.: Space filling curve based point clouds index. In: Proceedings of the 8th International Conference on GeoComputation, pp. 551–562. Citeseer (2005)

    Google Scholar 

  42. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-CNN: octree-based convolutional neural networks for 3d shape analysis. ACM Trans. Graphics (TOG) 36(4), 1–11 (2017)

    Google Scholar 

  43. Wang, S., Suo, S., Ma, W.C., Pokrovsky, A., Urtasun, R.: Deep parametric continuous convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2589–2597 (2018)

    Google Scholar 

  44. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the CVPR, pp. 7794–7803 (2018)

    Google Scholar 

  45. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. TOG 38(5), 1–12 (2019)

    Article  Google Scholar 

  46. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  47. Wu, B., Wan, A., Yue, X., Keutzer, K.: SqueezeSeg: convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D lidar point cloud. In: ICRA, pp. 1887–1893. IEEE (2018)

    Google Scholar 

  48. Wu, W., Qi, Z., Fuxin, L.: Pointconv: deep convolutional networks on 3D point clouds. In: CVPR, pp. 9621–9630 (2019)

    Google Scholar 

  49. Wu, Z., et al.: 3D shapenets: a deep representation for volumetric shapes. In: CVPR, pp. 1912–1920 (2015)

    Google Scholar 

  50. Xiang, T., Zhang, C., Song, Y., Yu, J., Cai, W.: Walk in the cloud: learning curves for point clouds shape analysis. arXiv preprint arXiv:2105.01288 (2021)

  51. Xu, C., et al.: Image2point: 3D point-cloud understanding with pretrained 2D convnets. arXiv preprint arXiv:2106.04180 (2021)

  52. Xu, Q., Sun, X., Wu, C.Y., Wang, P., Neumann, U.: Grid-GCN for fast and scalable point cloud learning. In: CVPR, pp. 5661–5670 (2020)

    Google Scholar 

  53. Yan, X., Zheng, C., Li, Z., Wang, S., Cui, S.: PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling. In: CVPR, pp. 5589–5598 (2020)

    Google Scholar 

  54. Ye, M., Xu, S., Cao, T., Chen, Q.: DRINet: a dual-representation iterative learning network for point cloud segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7447–7456 (2021)

    Google Scholar 

  55. Zhang, S., He, X., Yan, S.: LatentGNN: learning efficient non-local relations for visual recognition. In: Proceedings of the ICML, pp. 7374–7383 (2019)

    Google Scholar 

  56. Zhang, Y., et al.: PolarNet: an improved grid representation for online lidar point clouds semantic segmentation. In: CVPR, pp. 9601–9610 (2020)

    Google Scholar 

  57. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)

    Google Scholar 

  58. Zhao, L., Zhou, H., Zhu, X., Song, X., Li, H., Tao, W.: Lif-seg: lidar and camera image fusion for 3D lidar semantic segmentation. ArXiv abs/2108.07511 (2021)

    Google Scholar 

  59. Zhao, Q., et al.: Rethinking the zigzag flattening for image reading. arXiv preprint arXiv:2202.10240 (2022)

  60. Zhou, H., et al.: Cylinder3D: an effective 3d framework for driving-scene lidar semantic segmentation. arXiv preprint arXiv:2008.01550 (2020)

  61. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3d object detection. In: CVPR, pp. 4490–4499 (2018)

    Google Scholar 

  62. Zhu, X., et al.: Cylindrical and asymmetrical 3D convolution networks for lidar-based perception. IEEE Trans. Pattern Anal. Mach. Intell. 44, 6807–6822 (2021)

    Google Scholar 

  63. Zhu, X., et al.: Cylindrical and asymmetrical 3D convolution networks for lidar segmentation. In: CVPR, pp. 9934–9943 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Yu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 204 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, W., Zhu, X., Chen, G., Yu, B. (2022). Efficient Point Cloud Analysis Using Hilbert Curve. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13662. Springer, Cham. https://doi.org/10.1007/978-3-031-20086-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20086-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20085-4

  • Online ISBN: 978-3-031-20086-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics