Skip to main content

Intrinsic Neural Fields: Learning Functions on Manifolds

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Neural fields have gained significant attention in the computer vision community due to their excellent performance in novel view synthesis, geometry reconstruction, and generative modeling. Some of their advantages are a sound theoretic foundation and an easy implementation in current deep learning frameworks. While neural fields have been applied to signals on manifolds, e.g., for texture reconstruction, their representation has been limited to extrinsically embedding the shape into Euclidean space. The extrinsic embedding ignores known intrinsic manifold properties and is inflexible wrt. Transfer of the learned function. To overcome these limitations, this work introduces intrinsic neural fields, a novel and versatile representation for neural fields on manifolds. Intrinsic neural fields combine the advantages of neural fields with the spectral properties of the Laplace-Beltrami operator. We show theoretically that intrinsic neural fields inherit many desirable properties of the extrinsic neural field framework but exhibit additional intrinsic qualities, like isometry invariance. In experiments, we show intrinsic neural fields can reconstruct high-fidelity textures from images with state-of-the-art quality and are robust to the discretization of the underlying manifold. We demonstrate the versatility of intrinsic neural fields by tackling various applications: texture transfer between deformed shapes & different shapes, texture reconstruction from real-world images with view dependence, and discretization-agnostic learning on meshes and point clouds.

L. Koestler and D. Grittner—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For reference: a \(80\times 80\) 3-channel color texture image has over 17k pixel values.

References

  1. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: IEEE International Conference on Computer Vision (ICCV) (2011)

    Google Scholar 

  2. Baatz, H., Granskog, J., Papas, M., Rousselle, F., Novák, J.: NeRF-Tex: neural reflectance field textures. In: Eurographics Symposium on Rendering (EGSR) (2021)

    Google Scholar 

  3. Basri, R., Galun, M., Geifman, A., Jacobs, D.W., Kasten, Y., Kritchman, S.: Frequency bias in neural networks for input of non-uniform density. In: International Conference on Machine Learning (ICML) (2020)

    Google Scholar 

  4. Benbarka, N., Höfer, T., ul Moqeet Riaz, H., Zell, A.: Seeing implicit neural representations as fourier series. In: IEEE Winter Conference of Applications on Computer Vision (WACV) (2022)

    Google Scholar 

  5. Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.M., Cremers, D.: Anisotropic diffusion descriptors. In: Computer Graphics Forum (CGF), vol. 35 (2016)

    Google Scholar 

  6. Boss, M., Braun, R., Jampani, V., Barron, J.T., Liu, C., Lensch, H.: NeRD: neural reflectance decomposition from image collections. In: IEEE International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  7. Boss, M., Jampani, V., Braun, R., Liu, C., Barron, J.T., Lensch, H.P.A.: Neural-PIL: neural pre-integrated lighting for reflectance decomposition. CoRR abs/2110.14373 (2021)

    Google Scholar 

  8. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer, Berlin (2009). https://doi.org/10.1007/978-0-387-73301-2

    Book  MATH  Google Scholar 

  9. Burghard, O., Dieckmann, A., Klein, R.: Embedding shapes with green’s functions for global shape matching. Comput. Graph. 68, 1–10 (2017)

    Article  Google Scholar 

  10. Chen, Z., Nobuhara, S., Nishino, K.: Invertible neural BRDF for object inverse rendering. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 767–783. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_45

    Chapter  Google Scholar 

  11. Chibane, J., Pons-Moll, G.: Implicit feature networks for texture completion from partial 3D data. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12536, pp. 717–725. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66096-3_48

    Chapter  Google Scholar 

  12. Crane, K., Weischedel, C., Wardetzky, M.: The heat method for distance computation. Commun. ACM 60, 90–99 (2017)

    Article  Google Scholar 

  13. Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  14. Dwivedi, V.P., Bresson, X.: A generalization of transformer networks to graphs. In: AAAI Workshop on Deep Learning on Graphs: Methods and Applications (2021)

    Google Scholar 

  15. Eisenberger, M., Lähner, Z., Cremers, D.: Smooth shells: multi-scale shape registration with functional maps. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  16. Gargan, D., Neelamkavil, F.: Approximating reflectance functions using neural networks. In: Drettakis, G., Max, N. (eds.) EGSR 1998. E, pp. 23–34. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-6453-2_3

    Chapter  Google Scholar 

  17. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH) (1997)

    Google Scholar 

  18. Hertz, A., Perel, O., Giryes, R., Sorkine-Hornung, O., Cohen-Or, D.: Mesh draping: parametrization-free neural mesh transfer. CoRR abs/2110.05433 (2021)

    Google Scholar 

  19. Hertz, A., Perel, O., Giryes, R., Sorkine-Hornung, O., Cohen-Or, D.: SAPE: spatially-adaptive progressive encoding for neural optimization. In: Conference on Neural Information Processing Systems (NeurIPS) (2021)

    Google Scholar 

  20. Jacot, A., Hongler, C., Gabriel, F.: Neural tangent kernel: convergence and generalization in neural networks. In: Conference on Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  21. Kovnatsky, A., Bronstein, M.M., Bronstein, A.M., Glashoff, K., Kimmel, R.: Coupled quasi-harmonic bases. In: Computer Graphics Forum, vol. 32 (2013)

    Google Scholar 

  22. Lee, J., Jin, K.H.: Local texture estimator for implicit representation function. CoRR abs/2111.08918 (2021)

    Google Scholar 

  23. Liu, X., Donate, A., Jemison, M., Mio, W.: Kernel functions for robust 3D surface registration with spectral embeddings. In: International Conference on Pattern Recognition (ICPR) (2008)

    Google Scholar 

  24. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34, 1–16 (2015)

    Article  Google Scholar 

  25. Marin, R., Cosmo, L., Melzi, S., Rampini, A., Rodolá, E.: Spectral geometry in practice. 3DV Tutorial (2021)

    Google Scholar 

  26. Mehta, I., Gharbi, M., Barnes, C., Shechtman, E., Ramamoorthi, R., Chandraker, M.: Modulated periodic activations for generalizable local functional representations. CoRR abs/2104.03960 (2021)

    Google Scholar 

  27. Meronen, L., Trapp, M., Solin, A.: Periodic activation functions induce stationarity. CoRR abs/2110.13572 (2021)

    Google Scholar 

  28. Michel, O., Bar-On, R., Liu, R., Benaim, S., Hanocka, R.: Text2Mesh: text-driven neural stylization for meshes. CoRR abs/2112.03221 (2021)

    Google Scholar 

  29. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  30. Morreale, L., Aigerman, N., Kim, V.G., Mitra, N.J.: Neural surface maps. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  31. Novak, R., et al.: Neural tangents: fast and easy infinite neural networks in Python. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  32. Oechsle, M., Mescheder, L.M., Niemeyer, M., Strauss, T., Geiger, A.: Texture fields: learning texture representations in function space. In: IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  33. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. (TOG) 31, 1–11 (2012)

    Article  Google Scholar 

  34. Palafox, P., Bozic, A., Thies, J., Nießner, M., Dai, A.: Neural parametric models for 3D deformable shapes. In: IEEE International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  35. Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM (1998)

    Google Scholar 

  36. Peng, L.W., Shamsuddin, S.M.H.: 3D object reconstruction and representation using neural networks. In: International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia (GRAPHITE) (2004)

    Google Scholar 

  37. Piperakis, E., Kumazawa, I.: Affine transformations of 3D objects represented with neural networks. In: IEEE International Conference on 3-D Digital Imaging and Modeling (2001)

    Google Scholar 

  38. Rahaman, N., et al.: On the spectral bias of neural networks. In: International Conference on Machine Learning (ICML) (2019)

    Google Scholar 

  39. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Conference on Neural Information Processing Systems (NeurIPS) (2007)

    Google Scholar 

  40. Ramasinghe, S., Lucey, S.: Beyond periodicity: towards a unifying framework for activations in coordinate-MLPs. CoRR abs/2111.15135 (2021)

    Google Scholar 

  41. Ramasinghe, S., Lucey, S.: Learning positional embeddings for coordinate-MLPs. CoRR abs/2112.11577 (2021)

    Google Scholar 

  42. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Symposium on Geometry Processing (SGP) (2007)

    Google Scholar 

  43. Salti, S., Tombari, F., Di Stefano, L.: SHOT: unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 125, 251–264 (2014)

    Article  Google Scholar 

  44. Sharp, N., Attaiki, S., Crane, K., Ovsjanikov, M.: DiffusionNet: discretization agnostic learning on surfaces. ACM Trans. Graph. (TOG) 41(3), 1–16 (2022)

    Article  Google Scholar 

  45. Sharp, N., Crane, K.: A Laplacian for nonmanifold triangle meshes. In: Computer Graphics Forum, vol. 39 (2020)

    Google Scholar 

  46. Sharp, N., Soliman, Y., Crane, K.: The vector heat method. ACM Trans. Graph. (TOG) 38, 1–19 (2019)

    Google Scholar 

  47. Singh, A., Sha, J., Narayan, K.S., Achim, T., Abbeel, P.: BigBIRD: a large-scale 3D database of object instances. In: IEEE International Conference on Robotics and Automation (ICRA) (2014)

    Google Scholar 

  48. Sitzmann, V., Martel, J.N.P., Bergman, A.W., Lindell, D.B., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: Conference on Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  49. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Symposium on Geometry Processing (SGP) (2007)

    Google Scholar 

  50. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Symposium on Geometry Processing (SGP) (2009)

    Google Scholar 

  51. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: Conference on Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  52. Tewari, A., et al.: Advances in neural rendering. CoRR abs/2111.05849 (2021)

    Google Scholar 

  53. Vaxman, A., Ben-Chen, M., Gotsman, C.: A multi-resolution approach to heat kernels on discrete surfaces. ACM Trans. Graph. (TOG) 29, 1–10 (2010)

    Article  Google Scholar 

  54. Vestner, M., et al.: Efficient deformable shape correspondence via kernel matching. In: International Conference on 3D Vision (3DV) (2017)

    Google Scholar 

  55. Wang, P., Liu, Y., Yang, Y., Tong, X.: Spline positional encoding for learning 3D implicit signed distance fields. In: International Joint Conference on Artificial Intelligence (IJCAI) (2021)

    Google Scholar 

  56. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  57. Wimbauer, F., Wu, S., Rupprecht, C.: De-rendering 3D objects in the wild. CoRR abs/2201.02279 (2022)

    Google Scholar 

  58. Xiang, F., Xu, Z., Hasan, M., Hold-Geoffroy, Y., Sunkavalli, K., Su, H.: NeuTex: neural texture mapping for volumetric neural rendering. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  59. Xie, Y., et al.: Neural fields in visual computing and beyond (2021)

    Google Scholar 

  60. Yifan, W., Rahmann, L., Sorkine-hornung, O.: Geometry-consistent neural shape representation with implicit displacement fields. In: International Conference on Learning Representations (ICLR) (2022)

    Google Scholar 

  61. Yüce, G., Ortiz-Jiménez, G., Besbinar, B., Frossard, P.: A structured dictionary perspective on implicit neural representations. CoRR abs/2112.01917 (2021)

    Google Scholar 

  62. Zhang, K., Luan, F., Wang, Q., Bala, K., Snavely, N.: PhySG: inverse rendering with spherical gaussians for physics-based material editing and relighting. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  63. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  64. Zheng, J., Ramasinghe, S., Lucey, S.: Rethinking positional encoding. CoRR abs/2107.02561 (2021)

    Google Scholar 

Download references

Acknowledgements

We thank Florian Hofherr, Simon Klenk, Dominik Muhle and Emanuele Rodolà for useful discussions and proofreading. ZL is funded by a KI-Starter grant from the Ministerium für Kultur und Wissenschaft NRW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zorah Lähner .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 14973 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koestler, L., Grittner, D., Moeller, M., Cremers, D., Lähner, Z. (2022). Intrinsic Neural Fields: Learning Functions on Manifolds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13662. Springer, Cham. https://doi.org/10.1007/978-3-031-20086-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20086-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20085-4

  • Online ISBN: 978-3-031-20086-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics