Skip to main content

Camera Auto-calibration from the Steiner Conic of the Fundamental Matrix

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13662))

Included in the following conference series:

Abstract

This paper addresses the problem of camera auto-calibration from the fundamental matrix under general motion. The fundamental matrix can be decomposed into a symmetric part (a Steiner conic) and a skew-symmetric part (a fixed point), which we find useful for fully calibrating camera parameters. We first obtain a fixed line from the image of the symmetric, skew-symmetric parts of the fundamental matrix and the image of the absolute conic. Then the properties of this fixed line are presented and proved, from which new constraints on general eigenvectors between the Steiner conic and the image of the absolute conic are derived. We thus propose a method to fully calibrate the camera. First, the three camera intrinsic parameters, i.e., the two focal lengths and the skew, can be solved from our new constraints on the imaged absolute conic obtained from at least three images. On this basis, we can initialize and then iteratively restore the optimal pair of projection centers of the Steiner conic, thereby obtaining the corresponding vanishing lines and images of circular points. Finally, all five camera parameters are fully calibrated using images of circular points obtained from at least three images. Experimental results on synthetic and real data demonstrate that our method achieves state-of-the-art performance in terms of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agapito, L., Hartley, R., Hayman, E.: Linear calibration of a rotating and zooming camera. In: Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149) (1999)

    Google Scholar 

  2. Agapito, L., Hayman, E., Reid, I.D.: Self-calibration of rotating and zooming cameras. Int. J. Comput. Vision 47, 287 (2005)

    Article  MATH  Google Scholar 

  3. Barath, D.: Five-point fundamental matrix estimation for uncalibrated cameras. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 235–243 (2018)

    Google Scholar 

  4. Chen, H.Y., Matsumoto, K., Ota, J., Arai, T.: Self-calibration of environmental camera for mobile robot navigation. Robot. Auton. Syst. 55, 177–190 (2007)

    Article  Google Scholar 

  5. Dyer, C.R.: Volumetric scene reconstruction from multiple views. In: Foundations of Image Understanding. pp. 469–489. Springer, New York (2001). https://doi.org/10.1007/978-1-4615-1529-6

  6. Espuny, F.: A new linear method for camera self-calibration with planar motion. J. Math, Imag. Vis. 27, 81–88 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Faugeras, O.D., Luong, Q.-T., Maybank, S.J.: Camera self-calibration: theory and experiments. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 321–334. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55426-2_37

    Chapter  Google Scholar 

  8. Fetzer, T., Reis, G., Stricker, D.: Stable intrinsic auto-calibration from fundamental matrices of devices with uncorrelated camera parameters. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 221–230 (2020)

    Google Scholar 

  9. Gentle, J.: Numerical Linear Algebra for Applications in Statistics. Springer New York (1998). https://doi.org/10.1007/978-1-4612-0623-1

  10. Gurdjos, P., Sturm, S., Wu, Y.H.: Euclidean structure from n \(\ge \) 2 parallel circles: Theory Algorithms, pp. 238–252 (2006)

    Google Scholar 

  11. Habed, A., Boufama, B.: Camera self-calibration from triplets of images using bivariate polynomials derived from Kruppa’s equations. In: IEEE International Conference on Image Processing, 2005 2, II-1174 (2005)

    Google Scholar 

  12. Hartley, R.: Kruppa’s equations derived from the fundamental matrix. IEEE Trans. Pattern Anal. Mach. Intell. 19, 133–135 (1997)

    Article  Google Scholar 

  13. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn,. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  14. Huang, H.F., Zhang, H., Cheung, Y.M.: The common self-polar triangle of separate circles: properties and applications to camera calibration. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1170–1174 (2016)

    Google Scholar 

  15. Huang, H.F., Zhang, H., Cheung, Y.M.: Homography estimation from the common self-polar triangle of separate ellipses. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1737–1744 (2016)

    Google Scholar 

  16. Jaynes, C.: Multi-view calibration from planar motion trajectories. Image Vis. Comput. 22, 535–550 (2004)

    Article  Google Scholar 

  17. Ji, Q., Zhang, Y.M.: Camera calibration with genetic algorithms. IEEE Trans. Syst. Man Cybern, Part A Syst. Hum. 31, 120–130 (2001)

    Article  Google Scholar 

  18. Jiang, Z.T., Wu, W.H., Wu, M.: Camera autocalibration from Krupp’s equations using particle swarm optimization. In: CSSE (2008)

    Google Scholar 

  19. Koch, R., Gool, L.V.: 3D structure from multiple images of large-scale environments. In: Lecture Notes in Computer Science (1998)

    Google Scholar 

  20. Lei, C.: A novel camera self-calibration technique based on the Krupp equations. Chinese J. Comput. (2003)

    Google Scholar 

  21. Li, J., Yang, Y.M., Fu, G.P.: Camera self-calibration method based on ga-pso algorithm. 2011 IEEE International Conference on Cloud Computing and Intelligence Systems pp. 149–152 (2011). https://doi.org/10.1109/CCIS.2011.6045050

  22. Liang, B.J., Chen, Z.Z., Pears, N.: Uncalibrated two-view metrology. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 1, pp. 96–99 (2004)

    Google Scholar 

  23. Liang, C., Wong, K.: Robust recovery of shapes with unknown topology from the dual space. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2205 (2007)

    Article  Google Scholar 

  24. Liu, Y., Yang, J.Y., Zhou, X.Y., Ma, Q.Q., Zhang, H.: Intrinsic calibration of a camera to a line-structured light using a single view of two spheres. In: Advanced Concepts for Intelligent Vision Systems. pp. 87–98. Springer, Cham (2018)

    Google Scholar 

  25. Mendonca, P.R.S.: Multiview geometry: profiles and self-calibration. Ph.D. thesis, University of Cambridge (2001)

    Google Scholar 

  26. Mendonca, P.R.S., Wong, K.Y., Cipolla, R.: Epipolar geometry from profiles under circular motion. IEEE Trans. Pattern Anal. Mach. Intell. 23, 604–616 (2001)

    Article  Google Scholar 

  27. Moré, J.J.: The Levenberg-marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 630, pp. 105–116. Springer, Heidelberg (1978). https://doi.org/10.1007/BFb0067700

    Chapter  Google Scholar 

  28. Projectibe, C.Z.: Affine and euclidean calibration in computer vision and the application of three dimensional perception. Ph.D. thesis, Robot Vis Group. INRIA Sophia - Antipolis (1996)

    Google Scholar 

  29. Semple, J., Kneebone, G.: Algebraic Projective Geometry. Oxford University Press, Oxford (1998)

    Google Scholar 

  30. Sinha, S.N., Pollefeys, M., McMillan, L.: Camera network calibration from dynamic silhouettes. in: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, pp. 235–243 (2004)

    Google Scholar 

  31. Wang, G.H., Wu, Q.M., Zhang, W.: Kruppa equation based camera calibration from homography induced by remote plane. Pattern Recogn. Lett. 29, 2137–2144 (2008)

    Article  Google Scholar 

  32. Wilczkowiak, M., Boyer, E., Sturm, P.F.: Camera calibration and 3D reconstruction from single images using parallelepipeds. In: Proceedings Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 1, pp. 142–148 (2001)

    Google Scholar 

  33. Wong, K.Y., Zhang, G.Q., Liang, C., Zhang, H.: 1D camera geometry and its application to the self-calibration of circular motion sequences. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2243–2248 (2009)

    Article  Google Scholar 

  34. Zhang, H., Wong, K.Y.: Self-calibration of turntable sequences from silhouettes. IEEE Trans. Pattern Anal. Mach. Intell. 31, 5–14 (2009)

    Article  Google Scholar 

  35. Zhang, H., Zhang, G.Q., Wong, K.Y.: Camera calibration with spheres: linear approaches. In: IEEE International Conference on Image Processing, vol. 2 (2005)

    Google Scholar 

  36. Zhang, Z.Y.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)

    Google Scholar 

  37. Zhang, Z.Z.: Camera calibration with one-dimensional objects. In: IEEE, pp. 892–899 (2004)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (2022YFE0201400), the National Natural Science Foundation of China (62076029), Guangdong Science and Technology Department (2022B1212010006, 2017A030313362) and internal funds of the United International College (R202012, R201802, UICR0400025-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Zhang, H. (2022). Camera Auto-calibration from the Steiner Conic of the Fundamental Matrix. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13662. Springer, Cham. https://doi.org/10.1007/978-3-031-20086-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20086-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20085-4

  • Online ISBN: 978-3-031-20086-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics