Skip to main content

Neural Light Field Estimation for Street Scenes with Differentiable Virtual Object Insertion

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13662))

Included in the following conference series:

Abstract

We consider the challenging problem of outdoor lighting estimation for the goal of photorealistic virtual object insertion into photographs. Existing works on outdoor lighting estimation typically simplify the scene lighting into an environment map which cannot capture the spatially-varying lighting effects in outdoor scenes. In this work, we propose a neural approach that estimates the 5D HDR light field from a single image, and a differentiable object insertion formulation that enables end-to-end training with image-based losses that encourage realism. Specifically, we design a hybrid lighting representation tailored to outdoor scenes, which contains an HDR sky dome that handles the extreme intensity of the sun, and a volumetric lighting representation that models the spatially-varying appearance of the surrounding scene. With the estimated lighting, our shadow-aware object insertion is fully differentiable, which enables adversarial training over the composited image to provide additional supervisory signal to the lighting prediction. We experimentally demonstrate that our hybrid lighting representation is more performant than existing outdoor lighting estimation methods. We further show the benefits of our AR object insertion in an autonomous driving application, where we obtain performance gains for a 3D object detector when trained on our augmented data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.turbosquid.com.

References

  1. Adelson, E.H., Bergen, J.R.: The plenoptic function and the elements of early vision. In: Computational Models of Visual Processing, pp. 3–20. MIT Press (1991)

    Google Scholar 

  2. Alhaija, H.A., Mustikovela, S.K., Mescheder, L., Geiger, A., Rother, C.: Augmented reality meets computer vision: efficient data generation for urban driving scenes. Int. J. Comput. Vis. 126(9), 961–972 (2018)

    Article  Google Scholar 

  3. Boss, M., Jampani, V., Kim, K., Lensch, H., Kautz, J.: Two-shot spatially-varying BRDF and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3982–3991 (2020)

    Google Scholar 

  4. Burley, B., Studios, W.D.A.: Physically-based shading at disney. In: ACM SIGGRAPH, vol. 2012, pp. 1–7 (2012)

    Google Scholar 

  5. Caesar, H., et al.: nuscenes: a multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027 (2019)

  6. Chen, W., et al.: Learning to predict 3D objects with an interpolation-based differentiable renderer. In: NeurIPS (2019)

    Google Scholar 

  7. Chen, W., et al.: DIB-R++: learning to predict lighting and material with a hybrid differentiable renderer. In: Advances in Neural Information Processing Systems (NeurIPS) (2021)

    Google Scholar 

  8. Chen, Y., et al.: GeoSim: realistic video simulation via geometry-aware composition for self-driving. In: CVPR (2021)

    Google Scholar 

  9. Community, B.O.: Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam (2018). http://www.blender.org

  10. Dwibedi, D., Misra, I., Hebert, M.: Cut, paste and learn: Surprisingly easy synthesis for instance detection. In: The IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  11. Gardner, M.A., Hold-Geoffroy, Y., Sunkavalli, K., Gagné, C., Lalonde, J.F.: Deep parametric indoor lighting estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7175–7183 (2019)

    Google Scholar 

  12. Gardner, M.A., et al.: Learning to predict indoor illumination from a single image. arXiv preprint arXiv:1704.00090 (2017)

  13. Garon, M., Sunkavalli, K., Hadap, S., Carr, N., Lalonde, J.F.: Fast spatially-varying indoor lighting estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6908–6917 (2019)

    Google Scholar 

  14. Guizilini, V., Ambrus, R., Pillai, S., Raventos, A., Gaidon, A.: 3D packing for self-supervised monocular depth estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). arxiv.org:1512.03385

  16. Hold-Geoffroy, Y., Athawale, A., Lalonde, J.F.: Deep sky modeling for single image outdoor lighting estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6927–6935 (2019)

    Google Scholar 

  17. Hold-Geoffroy, Y., Sunkavalli, K., Hadap, S., Gambaretto, E., Lalonde, J.F.: Deep outdoor illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7312–7321 (2017)

    Google Scholar 

  18. Hong, S., Yan, X., Huang, T.E., Lee, H.: Learning hierarchical semantic image manipulation through structured representations. In: Advances in Neural Information Processing Systems, pp. 2713–2723 (2018)

    Google Scholar 

  19. Karis, B., Games, E.: Real shading in unreal engine 4. Proc. Phys. Based Shading Theory Pract. 4(3), 1 (2013)

    Google Scholar 

  20. Kim, S.W., Philion, J., Torralba, A., Fidler, S.: DriveGAN: towards a controllable high-quality neural simulation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  21. LeGendre, C., et al.: DeepLight: learning illumination for unconstrained mobile mixed reality. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5918–5928 (2019)

    Google Scholar 

  22. Li, T.M., Aittala, M., Durand, F., Lehtinen, J.: Differentiable monte Carlo ray tracing through edge sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 37(6), 222:1–222:11 (2018)

    Google Scholar 

  23. Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Inverse rendering for complex indoor scenes: shape, spatially-varying lighting and SVBRDF from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2475–2484 (2020)

    Google Scholar 

  24. Li, Z., Xu, Z., Ramamoorthi, R., Sunkavalli, K., Chandraker, M.: Learning to reconstruct shape and spatially-varying reflectance from a single image. ACM Trans. Graph. (TOG) 37(6), 1–11 (2018)

    Article  Google Scholar 

  25. Ling, H., Acuna, D., Kreis, K., Kim, S.W., Fidler, S.: Variational a modal object completion. Adv. Neural Inf. Process. Syst. 33, 16246–16257 (2020)

    Google Scholar 

  26. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)

    Google Scholar 

  27. Nimier-David, M., Vicini, D., Zeltner, T., Jakob, W.: Mitsuba 2: a retargetable forward and inverse renderer. Trans. Graph. (Proceedings of SIGGRAPH Asia) 38(6) (2019). https://doi.org/10.1145/3355089.3356498

  28. Ost, J., Mannan, F., Thuerey, N., Knodt, J., Heide, F.: Neural scene graphs for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2856–2865, June 2021

    Google Scholar 

  29. Peers, P., Tamura, N., Matusik, W., Debevec, P.: Post-production facial performance relighting using reflectance transfer. ACM Trans. Graph. (TOG) 26(3), 52-es (2007)

    Google Scholar 

  30. Philion, J., Fidler, S.: Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3D. arXiv preprint arXiv:2008.05711 (2020). https://doi.org/10.1007/978-3-030-58568-6_12

  31. Sengupta, S., Gu, J., Kim, K., Liu, G., Jacobs, D.W., Kautz, J.: Neural inverse rendering of an indoor scene from a single image. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  32. Somanath, G., Kurz, D.: HDR environment map estimation for real-time augmented reality. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  33. Song, S., Funkhouser, T.: Neural illumination: lighting prediction for indoor environments. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6918–6926 (2019)

    Google Scholar 

  34. Srinivasan, P.P., Mildenhall, B., Tancik, M., Barron, J.T., Tucker, R., Snavely, N.: Lighthouse: predicting lighting volumes for spatially-coherent illumination. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8080–8089 (2020)

    Google Scholar 

  35. Su, H., Qi, C.R., Li, Y., Guibas, L.J.: Render for CNN: viewpoint estimation in images using CNNs trained with rendered 3d model views. In: The IEEE International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  36. Wang, T., Zhu, X., Pang, J., Lin, D.: FCOS3D: fully convolutional one-stage monocular 3D object detection. arXiv preprint arXiv:2104.10956 (2021)

  37. Wang, Z., Philion, J., Fidler, S., Kautz, J.: Learning indoor inverse rendering with 3D spatially-varying lighting. In: Proceedings of International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  38. Wei, X., Chen, G., Dong, Y., Lin, S., Tong, X.: Object-based illumination estimation with rendering-aware neural networks. arXiv preprint arXiv:2008.02514 (2020). https://doi.org/10.1007/978-3-030-58555-6_23

  39. Zhang, J., Sunkavalli, K., Hold-Geoffroy, Y., Hadap, S., Eisenman, J., Lalonde, J.F.: All-weather deep outdoor lighting estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10158–10166 (2019)

    Google Scholar 

  40. Zhang, Y., et al.: Image GANs meet differentiable rendering for inverse graphics and interpretable 3D neural rendering. In: International Conference on Learning Representations (2021)

    Google Scholar 

  41. Zhao, Y., Guo, T.: Pointar: Efficient lighting estimation for mobile augmented reality. arXiv preprint arXiv:2004.00006 (2020). https://doi.org/10.1007/978-3-030-58592-1_40

  42. Zhou, Y., Huang, J., Dai, X., Luo, L., Chen, Z., Ma, Y.: HoliCity: A city-scale data platform for learning holistic 3D structures (2020). arXiv:2008.03286 [cs.CV]

  43. Zhu, Y., Zhang, Y., Li, S., Shi, B.: Spatially-varying outdoor lighting estimation from intrinsics. In: CVPR (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zian Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 10435 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Chen, W., Acuna, D., Kautz, J., Fidler, S. (2022). Neural Light Field Estimation for Street Scenes with Differentiable Virtual Object Insertion. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13662. Springer, Cham. https://doi.org/10.1007/978-3-031-20086-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20086-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20085-4

  • Online ISBN: 978-3-031-20086-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics