Skip to main content

Depth Map Decomposition for Monocular Depth Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

We propose a novel algorithm for monocular depth estimation that decomposes a metric depth map into a normalized depth map and scale features. The proposed network is composed of a shared encoder and three decoders, called G-Net, N-Net, and M-Net, which estimate gradient maps, a normalized depth map, and a metric depth map, respectively. M-Net learns to estimate metric depths more accurately using relative depth features extracted by G-Net and N-Net. The proposed algorithm has the advantage that it can use datasets without metric depth labels to improve the performance of metric depth estimation. Experimental results on various datasets demonstrate that the proposed algorithm not only provides competitive performance to state-of-the-art algorithms but also yields acceptable results even when only a small amount of metric depth data is available for its training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhat, S.F., Alhashim, I., Wonka, P.: AdaBins: depth estimation using adaptive bins. In: CVPR, pp. 4009–4018 (2021)

    Google Scholar 

  2. Chen, W., Fu, Z., Yang, D., Deng, J.: Single-image depth perception in the wild. In: NIPS, pp. 730–738 (2016)

    Google Scholar 

  3. Chen, X., Chen, X., Zha, Z.J.: Structure-aware residual pyramid network for monocular depth estimation. In: IJCAI, pp. 694–700 (2019)

    Google Scholar 

  4. Dosovitskiy, A., et al.: An image is worth 16 x 16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  5. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: ICCV, pp. 2650–2658 (2015)

    Google Scholar 

  6. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: NIPS, pp. 2366–2374 (2014)

    Google Scholar 

  7. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: CVPR, pp. 2002–2011 (2018)

    Google Scholar 

  8. Godard, C., Aodha, O.M., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: CVPR, pp. 270–279 (2017)

    Google Scholar 

  9. Gupta, A., Efros, A.A., Hebert, M.: Blocks world revisited: image understanding using qualitative geometry and mechanics. In: ECCV, pp. 482–496 (2010)

    Google Scholar 

  10. Gupta, A., Hebert, M., Kanade, T., Blei, D.: Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces. In: NIPS (2010)

    Google Scholar 

  11. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier (2011)

    Google Scholar 

  12. Hao, Z., Li, Y., You, S., Lu, F.: Detail preserving depth estimation from a single image using attention guided networks. In: 3DV, pp. 304–313 (2018)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  14. Heo, M., Lee, J., Kim, K.R., Kim, H.U., Kim, C.S.: Monocular depth estimation using whole strip masking and reliability-based refinement. In: ECCV, pp. 36–51 (2018)

    Google Scholar 

  15. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  16. Hu, J., Ozay, M., Zhang, Y., Okatani, T.: Revisiting single image depth estimation: toward higher resolution maps with accurate object boundaries. In: WACV, pp. 1043–1051 (2019)

    Google Scholar 

  17. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)

    Google Scholar 

  18. Huynh, L., Nguyen-Ha, P., Matas, J., Rahtu, E., Heikkilä, J.: Guiding monocular depth estimation using depth-attention volume. In: ECCV, pp. 581–597 (2020)

    Google Scholar 

  19. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: CVPR, pp. 2462–2470 (2017)

    Google Scholar 

  20. Izadinia, H., Shan, Q., Seitz, S.M.: IM2CAD. In: CVPR, pp. 5134–5143 (2017)

    Google Scholar 

  21. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93 (1938)

    Article  MATH  Google Scholar 

  22. Kim, H., et al.: Weighted joint-based human behavior recognition algorithm using only depth information for low-cost intelligent video-surveillance system. Expert Syst. Appl. 45, 131–141 (2016)

    Google Scholar 

  23. Kim, Y., Jung, H., Min, D., Sohn, K.: Deep monocular depth estimation via integration of global and local predictions. IEEE Trans. Image Process. 27(8), 4131–4144 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  25. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 3DV, pp. 239–248 (2016)

    Google Scholar 

  26. Lee, J.H., Heo, M., Kim, K.R., Kim, C.S.: Single-image depth estimation based on Fourier domain analysis. In: CVPR, pp. 330–339 (2018)

    Google Scholar 

  27. Lee, J.H., Kim, C.S.: Monocular depth estimation using relative depth maps. In: CVPR, pp. 9729–9738 (2019)

    Google Scholar 

  28. Lee, J.H., Kim, C.S.: Multi-loss rebalancing algorithm for monocular depth estimation. In: ECCV, pp. 785–801 (2020)

    Google Scholar 

  29. Lee, J.H., Lee, C., Kim, C.S.: Learning multiple pixelwise tasks based on loss scale balancing. In: ICCV, pp. 5107–5116 (2021)

    Google Scholar 

  30. Lee, J.H., Han, M.K., Ko, D.W., Suh, I.H.: From big to small: Multi-scale local planar guidance for monocular depth estimation. arXiv preprint arXiv:1907.10326 (2019)

  31. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. 23(3), 689–694 (2004)

    Article  Google Scholar 

  32. Li, Z., et al.: Learning the depths of moving people by watching frozen people. In: CVPR, pp. 4521–4530 (2019)

    Google Scholar 

  33. Li, Z., Snavely, N.: MegaDepth: learning single-view depth prediction from internet photos. In: CVPR, pp. 2041–2050 (2018)

    Google Scholar 

  34. Lienen, J., Hullermeier, E., Ewerth, R., Nommensen, N.: Monocular depth estimation via listwise ranking using the Plackett-Luce model. In: CVPR, pp. 14595–14604 (2021)

    Google Scholar 

  35. Liu, C., Yang, J., Ceylan, D., Yumer, E., Furukawa, Y.: PlaneNet: piece-wise planar reconstruction from a single RGB image. In: CVPR, pp. 2579–2588 (2018)

    Google Scholar 

  36. Liu, C., et al.: Progressive neural architecture search. In: ECCV, pp. 19–34 (2018)

    Google Scholar 

  37. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: CVPR, pp. 1871–1880 (2019)

    Google Scholar 

  38. Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single image. In: ICRA, pp. 4796–4803 (2018)

    Google Scholar 

  39. Park, J., Joo, K., Hu, Z., Liu, C.K., So Kweon, I.: Non-local spatial propagation network for depth completion. In: ECCV, pp. 120–136 (2020)

    Google Scholar 

  40. Qi, X., Liao, R., Liu, Z., Urtasun, R., Jia, J.: GeoNet: geometric neural network for joint depth and surface normal estimation. In: CVPR, pp. 283–291 (2018)

    Google Scholar 

  41. Ramamonjisoa, M., Lepetit, V.: SharpNet: Fast and accurate recovery of occluding contours in monocular depth estimation. In: ICCVW (2019)

    Google Scholar 

  42. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: ICCV, pp. 12179–12188 (2021)

    Google Scholar 

  43. Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  44. Saxena, A., Sun, M., Ng, A.Y.: Make3D: learning 3D scene structure from a single still image. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 824–840 (2008)

    Article  Google Scholar 

  45. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: ECCV, pp. 746–760 (2012)

    Google Scholar 

  46. Song, S., Lichtenberg, S.P., Xiao, J.: SUN RGB-D: a RGB-D scene understanding benchmark suite. In: CVPR, pp. 567–576 (2015)

    Google Scholar 

  47. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: ICML, pp. 6105–6114 (2019)

    Google Scholar 

  48. Wang, C., Lucey, S., Perazzi, F., Wang, O.: Web stereo video supervision for depth prediction from dynamic scenes. In: 3DV, pp. 348–357. IEEE (2019)

    Google Scholar 

  49. Wang, P., Shen, X., Lin, Z., Cohen, S., Price, B., Yuille, A.L.: Towards unified depth and semantic prediction from a single image. In: CVPR, pp. 2800–2809 (2015)

    Google Scholar 

  50. Xian, K., et al.: Monocular relative depth perception with web stereo data supervision. In: CVPR, pp. 311–320 (2018)

    Google Scholar 

  51. Xian, K., Zhang, J., Wang, O., Mai, L., Lin, Z., Cao, Z.: Structure-guided ranking loss for single image depth prediction. In: CVPR, pp. 611–620 (2020)

    Google Scholar 

  52. Xie, J., Girshick, R., Farhadi, A.: Deep3D: fully automatic 2D-to-3D video conversion with deep convolutional neural networks. In: ECCV, pp. 842–857 (2016)

    Google Scholar 

  53. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 1492–1500 (2017)

    Google Scholar 

  54. Xu, D., Ricci, E., Ouyang, W., Wang, X., Sebe, N.: Multi-scale continuous CRFs as sequential deep networks for monocular depth estimation. In: CVPR, pp. 5354–5362 (2017)

    Google Scholar 

  55. Xu, Y., Zhu, X., Shi, J., Zhang, G., Bao, H., Li, H.: Depth completion from sparse LiDAR data with depth-normal constraints. In: ICCV, pp. 2811–2820 (2019)

    Google Scholar 

  56. Yin, W., Liu, Y., Shen, C., Yan, Y.: Enforcing geometric constraints of virtual normal for depth prediction. In: ICCV, pp. 5684–5693 (2019)

    Google Scholar 

  57. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: CVPR, pp. 472–480 (2017)

    Google Scholar 

  58. Zoran, D., Isola, P., Krishnan, D., Freeman, W.T.: Learning ordinal relationships for mid-level vision. In: ICCV, pp. 388–396 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (No. NRF-2021R1A4A1031864 and No. NRF-2022R1A2B5B03002310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Su Kim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6057 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jun, J., Lee, JH., Lee, C., Kim, CS. (2022). Depth Map Decomposition for Monocular Depth Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13662. Springer, Cham. https://doi.org/10.1007/978-3-031-20086-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20086-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20085-4

  • Online ISBN: 978-3-031-20086-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics