Abstract
Online Knowledge Distillation (OKD) improves the involved models by reciprocally exploiting the difference between teacher and student. Several crucial bottlenecks over the gap between them — e.g., Why and when does a large gap harm the performance, especially for student? How to quantify the gap between teacher and student? — have received limited formal study. In this paper, we propose Switchable Online Knowledge Distillation (SwitOKD), to answer these questions. Instead of focusing on the accuracy gap at test phase by the existing arts, the core idea of SwitOKD is to adaptively calibrate the gap at training phase, namely distillation gap, via a switching strategy between two modes — expert mode (pause the teacher while keep the student learning) and learning mode (restart the teacher). To possess an appropriate distillation gap, we further devise an adaptive switching threshold, which provides a formal criterion as to when to switch to learning mode or expert mode, and thus improves the student’s performance. Meanwhile, the teacher benefits from our adaptive switching threshold and keeps basically on a par with other online arts. We further extend SwitOKD to multiple networks with two basis topologies. Finally, extensive experiments and analysis validate the merits of SwitOKD for classification over the state-of-the-arts. Our code is available at https://github.com/hfutqian/SwitOKD.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Throughout the rest of the paper, we regard high-capacity network as teacher and low-capacity network as student for simplicity.
References
Chen, D., Mei, J.P., Wang, C., Feng, Y., Chen, C.: Online knowledge distillation with diverse peers. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3430–3437 (2020)
Chen, P., Liu, S., Zhao, H., Jia, J.: Distilling knowledge via knowledge review. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5008–5017 (2021)
Cho, J.H., Hariharan, B.: On the efficacy of knowledge distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Chung, I., Park, S., Kim, J., Kwak, N.: Feature-map-level online adversarial knowledge distillation. In: International Conference on Machine Learning, pp. 2006–2015. PMLR (2020)
Guo, Q., et al.: Online knowledge distillation via collaborative learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS (2015)
Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Huang, Z., et al.: Revisiting knowledge distillation: an inheritance and exploration framework. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3579–3588 (2021)
Jin, X., et al.: Knowledge distillation via route constrained optimization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1345–1354 (2019)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)
Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N, 7N(7), 3 (2015)
Li, T., Li, J., Liu, Z., Zhang, C.: Few sample knowledge distillation for efficient network compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14639–14647 (2020)
Menon, A.K., Rawat, A.S., Reddi, S., Kim, S., Kumar, S.: A statistical perspective on distillation. In: International Conference on Machine Learning, pp. 7632–7642. PMLR (2021)
Mirzadeh, S.I., Farajtabar, M., Li, A., Levine, N., Matsukawa, A., Ghasemzadeh, H.: Improved knowledge distillation via teacher assistant. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5191–5198 (2020)
Passalis, N., Tzelepi, M., Tefas, A.: Heterogeneous knowledge distillation using information flow modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2339–2348 (2020)
Paszke, A., et al.: Automatic differentiation in pytorch (2017)
Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Song, G., Chai, W.: Collaborative learning for deep neural networks. In: Advances in Neural Information Processing Systems, pp. 1832–1841 (2018)
Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. arXiv preprint arXiv:1910.10699 (2019)
Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1365–1374 (2019)
Wang, X., Zhang, R., Sun, Y., Qi, J.: Kdgan: knowledge distillation with generative adversarial networks. In: Advances in Neural Information Processing Systems, pp. 775–786 (2018)
Wang, Y.: Survey on deep multi-modal data analytics: collaboration, rivalry, and fusion. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 17(1s), 1–25 (2021)
Xu, G., Liu, Z., Li, X., Loy, C.C.: Knowledge distillation meets self-supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 588–604. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_34
Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4133–4141 (2017)
Zagoruyko, S., Komodakis, N.: Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)
Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)
Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4320–4328 (2018)
Zhu, J., et al.: Complementary relation contrastive distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9260–9269 (2021)
Zhu, Y., Wang, Y.: Student customized knowledge distillation: bridging the gap between student and teacher. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5057–5066 (2021)
Acknowledgements
This work is supported by the National Natural Science Foundation of China under grant no U21A20470, 62172136, 61725203, U1936217. Key Research and Technology Development Projects of Anhui Province (no. 202004a5020043).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Qian, B., Wang, Y., Yin, H., Hong, R., Wang, M. (2022). Switchable Online Knowledge Distillation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13671. Springer, Cham. https://doi.org/10.1007/978-3-031-20083-0_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-20083-0_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20082-3
Online ISBN: 978-3-031-20083-0
eBook Packages: Computer ScienceComputer Science (R0)