Skip to main content

AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

This paper studies the Binary Neural Networks (BNNs) in which weights and activations are both binarized into 1-bit values, thus greatly reducing the memory usage and computational complexity. Since the modern deep neural networks are of sophisticated design with complex architecture for the accuracy reason, the diversity on distributions of weights and activations is very high. Therefore, the conventional sign function cannot be well used for effectively binarizing full-precision values in BNNs. To this end, we present a simple yet effective approach called AdaBin to adaptively obtain the optimal binary sets \(\{b_1, b_2\}\) (\(b_1, b_2\in \mathbb {R}\)) of weights and activations for each layer instead of a fixed set (i.e., \(\{-1, +1\}\)). In this way, the proposed method can better fit different distributions and increase the representation ability of binarized features. In practice, we use the center position and distance of 1-bit values to define a new binary quantization function. For the weights, we propose an equalization method to align the symmetrical center of binary distribution to real-valued distribution, and minimize the Kullback-Leibler divergence of them. Meanwhile, we introduce a gradient-based optimization method to get these two parameters for activations, which are jointly trained in an end-to-end manner. Experimental results on benchmark models and datasets demonstrate that the proposed AdaBin is able to achieve state-of-the-art performance. For instance, we obtain a 66.4% Top-1 accuracy on the ImageNet using ResNet-18 architecture, and a 69.4 mAP on PASCAL VOC using SSD300.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEEE standard for binary floating-point arithmetic: ANSI/IEEE Std 754–1985, 1–20 (1985). https://doi.org/10.1109/IEEESTD.1985.82928

  2. Anderson, A.G., Berg, C.P.: The high-dimensional geometry of binary neural networks. arXiv preprint arXiv:1705.07199 (2017)

  3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  4. Baskin, C., et al.: Uniq: uniform noise injection for non-uniform quantization of neural networks. ACM Trans. Comput. Syst. (TOCS) 37(1–4), 1–15 (2021)

    Google Scholar 

  5. Bethge, J., Bartz, C., Yang, H., Chen, Y., Meinel, C.: MeliusNet: an improved network architecture for binary neural networks. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1439–1448 (2021)

    Google Scholar 

  6. Bethge, J., Yang, H., Bornstein, M., Meinel, C.: Back to simplicity: how to train accurate BNNs from scratch? arXiv preprint arXiv:1906.08637 (2019)

  7. Bethge, J., Yang, H., Bornstein, M., Meinel, C.: BinarydenseNet: developing an architecture for binary neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  8. Cai, Z., He, X., Sun, J., Vasconcelos, N.: Deep learning with low precision by half-wave gaussian quantization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5918–5926 (2017)

    Google Scholar 

  9. Chen, H., et al.: AdderNet: do we really need multiplications in deep learning? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1468–1477 (2020)

    Google Scholar 

  10. Chen, X., Zhang, Y., Wang, Y.: MTP: multi-task pruning for efficient semantic segmentation networks. arXiv preprint arXiv:2007.08386 (2020)

  11. Chen, X., Zhang, Y., Wang, Y., Shu, H., Xu, C., Xu, C.: Optical flow distillation: towards efficient and stable video style transfer. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 614–630. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_37

    Chapter  Google Scholar 

  12. Choukroun, Y., Kravchik, E., Yang, F., Kisilev, P.: Low-bit quantization of neural networks for efficient inference. In: ICCV Workshops, pp. 3009–3018 (2019)

    Google Scholar 

  13. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830 (2016)

  14. Deng, J., Dong, W., Socher, R., Li, L., Kai Li, Li Fei-Fei: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  15. Ding, R., Chin, T.W., Liu, Z., Marculescu, D.: Regularizing activation distribution for training binarized deep networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11408–11417 (2019)

    Google Scholar 

  16. Gong, R., et al.: Differentiable soft quantization: Bridging full-precision and low-bit neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4852–4861 (2019)

    Google Scholar 

  17. Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. In: International Conference on Machine Learning, pp. 1319–1327. PMLR (2013)

    Google Scholar 

  18. Han, K., Wang, Y., Xu, Y., Xu, C., Wu, E., Xu, C.: Training binary neural networks through learning with noisy supervision. In: International Conference on Machine Learning, pp. 4017–4026. PMLR (2020)

    Google Scholar 

  19. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient neural networks. arXiv preprint arXiv:1506.02626 (2015)

  20. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  22. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Sig. Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  23. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  24. Hou, L., Yao, Q., Kwok, J.T.: Loss-aware binarization of deep networks. arXiv preprint arXiv:1611.01600 (2016)

  25. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  28. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, F., Zhang, B., Liu, B.: Ternary weight networks. arXiv preprint arXiv:1605.04711 (2016)

  30. Lin, M., et al.: SiMaN: sign-to-magnitude network binarization. arXiv preprint arXiv:2102.07981 (2021)

  31. Lin, M., et al.: Rotated binary neural network. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  32. Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network. arXiv preprint arXiv:1711.11294 (2017)

  33. Liu, Z., Shen, Z., Savvides, M., Cheng, K.-T.: ReActNet: towards precise binary neural network with generalized activation functions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 143–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_9

    Chapter  Google Scholar 

  34. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.T.: Bi-Real Net: enhancing the performance of 1-bit CNNs with improved representational capability and advanced training algorithm. In: Proceedings of the European conference on computer vision (ECCV), pp. 722–737 (2018)

    Google Scholar 

  35. Martinez, B., Yang, J., Bulat, A., Tzimiropoulos, G.: Training binary neural networks with real-to-binary convolutions. arXiv preprint arXiv:2003.11535 (2020)

  36. Qin, H., et al.: Forward and backward information retention for accurate binary neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2250–2259 (2020)

    Google Scholar 

  37. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

    Chapter  Google Scholar 

  38. Wang, P., He, X., Li, G., Zhao, T., Cheng, J.: Sparsity-inducing binarized neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12192–12199 (2020)

    Google Scholar 

  39. Wang, Z., Lu, J., Wu, Z., Zhou, J.: Learning efficient binarized object detectors with information compression. IEEE Trans. Pattern Anal. Mach. Intell. 44(6), 3082–3095 (2021). https://doi.org/10.1109/TPAMI.2021.3050464

  40. Wang, Z., Wu, Z., Lu, J., Zhou, J.: BiDet: an efficient binarized object detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2049–2058 (2020)

    Google Scholar 

  41. Xu, Y., Han, K., Xu, C., Tang, Y., Xu, C., Wang, Y.: Learning frequency domain approximation for binary neural networks. In: NeurIPS (2021)

    Google Scholar 

  42. Xu, Z., et al.: ReCU: reviving the dead weights in binary neural networks. arXiv preprint arXiv:2103.12369 (2021)

  43. Yang, Z., et al.: Searching for low-bit weights in quantized neural networks. arXiv preprint arXiv:2009.08695 (2020)

  44. Yu, X., Liu, T., Wang, X., Tao, D.: On compressing deep models by low rank and sparse decomposition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7370–7379 (2017)

    Google Scholar 

  45. Zhang, Z., Shao, W., Gu, J., Wang, X., Luo, P.: Differentiable dynamic quantization with mixed precision and adaptive resolution. In: International Conference on Machine Learning, pp. 12546–12556. PMLR (2021)

    Google Scholar 

  46. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: DoReFa-Net: training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016)

Download references

Acknowledgments

This work was supported in part by Key-Area Research and Development Program of Guangdong Province No. 2019B010153003, Key Research and Development Program of Shaanxi No. 2022ZDLGY01-08, and Fundamental Research Funds for the Xi’an Jiaotong University No. xhj032021005-05.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinghao Chen or Pengju Ren .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 949 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tu, Z., Chen, X., Ren, P., Wang, Y. (2022). AdaBin: Improving Binary Neural Networks with Adaptive Binary Sets. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13671. Springer, Cham. https://doi.org/10.1007/978-3-031-20083-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20083-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20082-3

  • Online ISBN: 978-3-031-20083-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics