Skip to main content

Out-of-Distribution Identification: Let Detector Tell Which I Am Not Sure

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13670))

Included in the following conference series:

Abstract

The superior performance of object detectors is often established under the condition that the test samples are in the same distribution as the training data. However, in most practical applications, out-of-distribution (OOD) instances are inevitable and usually lead to detection uncertainty. In this work, the Feature structured OOD-IDentification (FOOD-ID) model is proposed to reduce the uncertainty of detection results by identifying the OOD instances. Instead of outputting each detection result directly, FOOD-ID uses a likelihood-based measuring mechanism to identify whether the feature satisfies the corresponding class distribution and outputs the OOD results separately. Specifically, the clustering-oriented feature structuration is firstly developed using class-specified prototypes and Attractive-Repulsive loss for more discriminative feature representation and more compact distribution. With the structured features space, the density distribution of all training categories is estimated based on a class-conditional normalizing flow, which is then used for the OOD identification in the test stage. The proposed FOOD-ID can be easily applied to various object detectors including anchor-based frameworks and anchor-free frameworks. Extensive experiments on the PASCAL VOC-IO dataset and an industrial defect dataset demonstrate that FOOD-ID achieves satisfactory OOD identification performance, with which the certainty of detection results is improved significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ardizzone, L., Mackowiak, R., Rother, C., Kothe, U.: Training normalizing flows with the information bottleneck for competitive generative classification. arXiv:Learning (2020)

  2. Bendale, A., Boult, T.E.: Towards open set deep networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1563–1572 (2016)

    Google Scholar 

  3. Choi, J., Chun, D., Kim, H., Lee, H.J.: Gaussian YOLOv3: an accurate and fast object detector using localization uncertainty for autonomous driving. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 502–511 (2019)

    Google Scholar 

  4. Dhamija, A., Günther, M., Ventura, J., Boult, T.: The overlooked elephant of object detection: open set, pp. 1010–1019 (2020). https://doi.org/10.1109/WACV45572.2020.9093355

  5. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. ArXiv abs/1605.08803 (2017)

    Google Scholar 

  6. Du, X., Wang, Z., Cai, M., Li, S.: VOS: learning what you don’t know by virtual outlier synthesis. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=TW7d65uYu5M

  7. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6568–6577 (2019)

    Google Scholar 

  8. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  9. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. ArXiv abs/1506.02142 (2016)

    Google Scholar 

  10. Gawlikowski, J., et al.: A survey of uncertainty in deep neural networks. ArXiv abs/2107.03342 (2021)

    Google Scholar 

  11. Ge, Z., Demyanov, S., Chen, Z., Garnavi, R.: Generative OpenMax for multi-class open set classification. ArXiv abs/1707.07418 (2017)

    Google Scholar 

  12. Girshick, R.B.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015)

    Google Scholar 

  13. Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  14. Harakeh, A., Smart, M., Waslander, S.L.: BayesOD: a Bayesian approach for uncertainty estimation in deep object detectors. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 87–93. IEEE (2020)

    Google Scholar 

  15. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)

  16. Hsu, Y.C., Shen, Y., Jin, H., Kira, Z.: Generalized ODIN: detecting out-of-distribution image without learning from out-of-distribution data. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10948–10957 (2020)

    Google Scholar 

  17. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110, 457–506 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaur, R., Jha, S., Roy, A., Park, S., Sokolsky, O., Lee, I.: Detecting OODs as datapoints with high uncertainty. arXiv preprint arXiv:2108.06380 (2021)

  19. Kong, T., Sun, F., Liu, H., Jiang, Y., Li, L., Shi, J.: FoveaBox: Beyound anchor-based object detection. IEEE Trans. Image Process. 29, 7389–7398 (2020)

    Article  MATH  Google Scholar 

  20. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NIPS (2017)

    Google Scholar 

  21. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: NeurIPS (2018)

    Google Scholar 

  22. Lee, Y., won Hwang, J., Kim, H., Yun, K., Park, J.: Localization uncertainty estimation for anchor-free object detection. ArXiv abs/2006.15607 (2020)

    Google Scholar 

  23. Li, X., Wang, W., Hu, X., Li, J., Tang, J., Yang, J.: Generalized focal loss V2: learning reliable localization quality estimation for dense object detection. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11627–11636 (2021)

    Google Scholar 

  24. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv:Learning (2018)

  25. Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 318–327 (2020)

    Article  Google Scholar 

  26. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  27. Liu, W., Wang, X., Owens, J.D., Li, Y.: Energy-based out-of-distribution detection. ArXiv abs/2010.03759 (2020)

    Google Scholar 

  28. Miller, A., Fisch, A., Dodge, J., Karimi, A.H., Bordes, A., Weston, J.: Key-value memory networks for directly reading documents. arXiv preprint arXiv:1606.03126 (2016)

  29. Miller, D., Nicholson, L., Dayoub, F., Sünderhauf, N.: Dropout sampling for robust object detection in open-set conditions. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–7 (2018)

    Google Scholar 

  30. Miller, D., Sünderhauf, N., Milford, M., Dayoub, F.: Class anchor clustering: a loss for distance-based open set recognition. In: 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 3569–3577 (2021)

    Google Scholar 

  31. Miller, D., Sunderhauf, N., Milford, M., Dayoub, F.: Uncertainty for identifying open-set errors in visual object detection. IEEE Robot. Autom. Lett. 7, 215–222 (2022)

    Article  Google Scholar 

  32. Neal, L., Olson, M., Fern, X., Wong, W.-K., Li, F.: Open set learning with counterfactual images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 620–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_38

    Chapter  Google Scholar 

  33. Ovadia, Y., et al.: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In: NeurIPS (2019)

    Google Scholar 

  34. Oza, P., Patel, V.M.: C2AE: class conditioned auto-encoder for open-set recognition. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2302–2311 (2019)

    Google Scholar 

  35. Park, H., Noh, J., Ham, B.: Learning memory-guided normality for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14372–14381 (2020)

    Google Scholar 

  36. Perera, P., et al.: Generative-discriminative feature representations for open-set recognition. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11811–11820 (2020)

    Google Scholar 

  37. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  38. Ren, J., et al.: Likelihood ratios for out-of-distribution detection. In: NeurIPS (2019)

    Google Scholar 

  39. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2015)

    Article  Google Scholar 

  40. Steinhardt, J., Liang, P.S.: Unsupervised risk estimation using only conditional independence structure. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  41. Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  42. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9626–9635 (2019)

    Google Scholar 

  43. Vyas, A., Jammalamadaka, N., Zhu, X., Das, D., Kaul, B., Willke, T.L.: Out-of-distribution detection using an ensemble of self supervised leave-out classifiers. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 560–574. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_34

    Chapter  Google Scholar 

  44. Wang, G., Li, W., Aertsen, M., Deprest, J.A., Ourselin, S., Vercauteren, T.K.M.: Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks. Neurocomputing 335, 34–45 (2019)

    Article  Google Scholar 

  45. Weston, J., Chopra, S., Bordes, A.: Memory networks. arXiv preprint arXiv:1410.3916 (2014)

  46. Yoshihashi, R., Shao, W., Kawakami, R., You, S., Iida, M., Naemura, T.: Classification-reconstruction learning for open-set recognition. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4011–4020 (2019)

    Google Scholar 

  47. Yu, Q., Aizawa, K.: Unsupervised out-of-distribution detection by maximum classifier discrepancy. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9517–9525 (2019)

    Google Scholar 

  48. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 840–849 (2019)

    Google Scholar 

  49. Zisselman, E., Tamar, A.: Deep residual flow for out of distribution detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13991–14000 (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Fund of China (61971281), the National Key R &D Program of China (2021YFD1400104), the Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102), and the Science and Technology Commission of Shanghai Municipality (18DZ2270700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongyang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, R., Zhang, C., Zhou, H., Shi, C., Luo, Y. (2022). Out-of-Distribution Identification: Let Detector Tell Which I Am Not Sure. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13670. Springer, Cham. https://doi.org/10.1007/978-3-031-20080-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20080-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20079-3

  • Online ISBN: 978-3-031-20080-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics