Skip to main content

Video Anomaly Detection by Solving Decoupled Spatio-Temporal Jigsaw Puzzles

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13670))

Included in the following conference series:

Abstract

Video Anomaly Detection (VAD) is an important topic in computer vision. Motivated by the recent advances in self-supervised learning, this paper addresses VAD by solving an intuitive yet challenging pretext task, i.e., spatio-temporal jigsaw puzzles, which is cast as a multi-label fine-grained classification problem. Our method exhibits several advantages over existing works: 1) the spatio-temporal jigsaw puzzles are decoupled in terms of spatial and temporal dimensions, responsible for capturing highly discriminative appearance and motion features, respectively; 2) full permutations are used to provide abundant jigsaw puzzles covering various difficulty levels, allowing the network to distinguish subtle spatio-temporal differences between normal and abnormal events; and 3) the pretext task is tackled in an end-to-end manner without relying on any pre-trained models. Our method outperforms state-of-the-art counterparts on three public benchmarks. Especially on ShanghaiTech Campus, the result is superior to reconstruction and prediction-based methods by a large margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/wizyoung/YOLOv3_TensorFlow.

References

  1. Adam, A., Rivlin, E., Shimshoni, I., Reinitz, D.: Robust real-time unusual event detection using multiple fixed-location monitors. IEEE TPAMI 30(3), 555–560 (2008)

    Article  Google Scholar 

  2. Ahsan, U., Madhok, R., Essa, I.: Video jigsaw: unsupervised learning of spatiotemporal context for video action recognition. In: WACV (2019)

    Google Scholar 

  3. Antić, B., Ommer, B.: Video parsing for abnormality detection. In: ICCV (2011)

    Google Scholar 

  4. Astrid, M., Zaheer, M.Z., Lee, J.Y., Lee, S.I.: Learning not to reconstruct anomalies. In: BMVC (2021)

    Google Scholar 

  5. Benaim, S., et al.: SpeedNet: learning the speediness in videos. In: CVPR (2020)

    Google Scholar 

  6. Chang, Y., Tu, Z., Xie, W., Yuan, J.: Clustering driven deep autoencoder for video anomaly detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 329–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_20

    Chapter  Google Scholar 

  7. Chen, D., Wang, P., Yue, L., Zhang, Y., Jia, T.: Anomaly detection in surveillance video based on bidirectional prediction. IVC 98, 103915 (2020)

    Google Scholar 

  8. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)

    Google Scholar 

  9. Cong, Y., Yuan, J., Liu, J.: Abnormal event detection in crowded scenes using sparse representation. PR 46(7), 1851–1864 (2013)

    Google Scholar 

  10. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: ICCV (2015)

    Google Scholar 

  11. Fan, Y., Wen, G., Li, D., Qiu, S., Levine, M.D., Xiao, F.: Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. CVIU 195, 102920 (2020)

    Google Scholar 

  12. Feng, X., Song, D., Chen, Y., Chen, Z., Ni, J., Chen, H.: Convolutional transformer based dual discriminator general adversarial networks for video anomaly detection. In: ACM MM (2021)

    Google Scholar 

  13. Georgescu, M.I., Barbalau, A., Ionescu, R.T., Khan, F.S., Popescu, M., Shah, M.: Anomaly detection in video via self-supervised and multi-task learning. In: CVPR (2021)

    Google Scholar 

  14. Georgescu, M.I., Ionescu, R.T., Khan, F.S., Popescu, M., Shah, M.: A background-agnostic framework with adversarial training for abnormal event detection in video. arXiv preprint arXiv:2008.12328 (2020)

  15. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: ICLR (2018)

    Google Scholar 

  16. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: ICCV (2019)

    Google Scholar 

  17. Haresh, S., Kumar, S., Zia, M.Z., Tran, Q.H.: Towards anomaly detection in dashcam videos. In: IV (2020)

    Google Scholar 

  18. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: CVPR (2016)

    Google Scholar 

  19. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  20. Hendrycks, D., Mazeika, M., Kadavath, S., Song, D.: Using self-supervised learning can improve model robustness and uncertainty. In: NeurIPS (2019)

    Google Scholar 

  21. Ionescu, R.T., Khan, F.S., Georgescu, M.I., Shao, L.: Object-centric auto-encoders and dummy anomalies for abnormal event detection in video. In: CVPR (2019)

    Google Scholar 

  22. Jenni, S., Meishvili, G., Favaro, P.: Video representation learning by recognizing temporal transformations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 425–442. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_26

    Chapter  Google Scholar 

  23. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  24. Kim, D., Cho, D., Kweon, I.S.: Self-supervised video representation learning with space-time cubic puzzles. In: AAAI (2019)

    Google Scholar 

  25. Komodakis, N., Gidaris, S.: Unsupervised representation learning by predicting image rotations. In: ICLR (2018)

    Google Scholar 

  26. Lee, H.Y., Huang, J.B., Singh, M., Yang, M.H.: Unsupervised representation learning by sorting sequences. In: ICCV (2017)

    Google Scholar 

  27. Lee, S., Kim, H.G., Ro, Y.M.: BMAN: bidirectional multi-scale aggregation networks for abnormal event detection. IEEE TIP 29, 2395–2408 (2019)

    MATH  Google Scholar 

  28. Lin, T.-Y., et al.: Microsoft COCO: Common Objects in Context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  29. Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection-a new baseline. In: CVPR (2018)

    Google Scholar 

  30. Liu, Z., Nie, Y., Long, C., Zhang, Q., Li, G.: A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction. In: ICCV (2021)

    Google Scholar 

  31. Lorre, G., Rabarisoa, J., Orcesi, A., Ainouz, S., Canu, S.: Temporal contrastive pretraining for video action recognition. In: WACV (2020)

    Google Scholar 

  32. Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in MATLAB. In: ICCV (2013)

    Google Scholar 

  33. Lu, Y., Kumar, K.M., shahabeddin Nabavi, S., Wang, Y.: Future frame prediction using convolutional VRNN for anomaly detection. In: AVSS (2019)

    Google Scholar 

  34. Luo, W., Liu, W., Gao, S.: Remembering history with convolutional LSTM for anomaly detection. In: ICME (2017)

    Google Scholar 

  35. Luo, W., Liu, W., Gao, S.: A revisit of sparse coding based anomaly detection in stacked RNN framework. In: ICCV (2017)

    Google Scholar 

  36. Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: CVPR (2010)

    Google Scholar 

  37. Misra, I., Zitnick, C.L., Hebert, M.: Shuffle and learn: unsupervised learning using temporal order verification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 527–544. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_32

    Chapter  Google Scholar 

  38. Morais, R., Le, V., Tran, T., Saha, B., Mansour, M., Venkatesh, S.: Learning regularity in skeleton trajectories for anomaly detection in videos. In: CVPR (2019)

    Google Scholar 

  39. Munawar, A., Vinayavekhin, P., De Magistris, G.: Limiting the reconstruction capability of generative neural network using negative learning. In: MLSP (2017)

    Google Scholar 

  40. Nguyen, T.N., Meunier, J.: Anomaly detection in video sequence with appearance-motion correspondence. In: ICCV (2019)

    Google Scholar 

  41. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  42. Pan, T., Song, Y., Yang, T., Jiang, W., Liu, W.: VideoMoCo: contrastive video representation learning with temporally adversarial examples. In: CVPR (2021)

    Google Scholar 

  43. Park, H., Noh, J., Ham, B.: Learning memory-guided normality for anomaly detection. In: CVPR (2020)

    Google Scholar 

  44. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  45. Pickup, L.C., et al.: Seeing the arrow of time. In: CVPR (2014)

    Google Scholar 

  46. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  47. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  48. Santa Cruz, R., Fernando, B., Cherian, A., Gould, S.: Visual permutation learning. IEEE TPAMI 41(12), 3100–3114 (2018)

    Article  Google Scholar 

  49. Sun, C., Jia, Y., Hu, Y., Wu, Y.: Scene-aware context reasoning for unsupervised abnormal event detection in videos. In: ACM MM (2020)

    Google Scholar 

  50. Tang, Y., Zhao, L., Zhang, S., Gong, C., Li, G., Yang, J.: Integrating prediction and reconstruction for anomaly detection. PRL 129, 123–130 (2020)

    Article  Google Scholar 

  51. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  52. Wang, X., Che, Z., Jiang, B., Xiao, N., Yang, K., Tang, J., Ye, J., Wang, J., Qi, Q.: Robust unsupervised video anomaly detection by multipath frame prediction. IEEE TNNLS 33, 2301–2312 (2021)

    MathSciNet  Google Scholar 

  53. Wang, Z., Zou, Y., Zhang, Z.: Cluster attention contrast for video anomaly detection. In: ACM MM (2020)

    Google Scholar 

  54. Wei, D., Lim, J.J., Zisserman, A., Freeman, W.T.: Learning and using the arrow of time. In: CVPR (2018)

    Google Scholar 

  55. Wu, P., Liu, J., Shen, F.: A deep one-class neural network for anomalous event detection in complex scenes. IEEE TNNLS 31(7), 2609–2622 (2019)

    Google Scholar 

  56. Xinyang Feng, Dongjin Song, Y.C.Z.C.J.N.H.C.: Convolutional transformer based dual discriminator generative adversarial networks for video anomaly detection. In: ACM MM (2021)

    Google Scholar 

  57. Xu, D., Xiao, J., Zhao, Z., Shao, J., Xie, D., Zhuang, Y.: Self-supervised spatiotemporal learning via video clip order prediction. In: CVPR (2019)

    Google Scholar 

  58. Ye, M., Peng, X., Gan, W., Wu, W., Qiao, Y.: AnoPCN: video anomaly detection via deep predictive coding network. In: ACM MM (2019)

    Google Scholar 

  59. Yu, G., et al.: Cloze test helps: effective video anomaly detection via learning to complete video events. In: ACM MM (2020)

    Google Scholar 

  60. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  61. Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., Hua, X.S.: Spatio-temporal autoencoder for video anomaly detection. In: ACM MM (2017)

    Google Scholar 

  62. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: ICLR (2018)

    Google Scholar 

Download references

Acknowledgment

This work is partly supported by the National Natural Science Foundation of China (62022011, U20B2069), the Research Program of State Key Laboratory of Software Development Environment (SKLSDE-2021ZX-04), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Huang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 887 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, G., Wang, Y., Qin, J., Zhang, D., Bao, X., Huang, D. (2022). Video Anomaly Detection by Solving Decoupled Spatio-Temporal Jigsaw Puzzles. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13670. Springer, Cham. https://doi.org/10.1007/978-3-031-20080-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20080-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20079-3

  • Online ISBN: 978-3-031-20080-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics