Skip to main content

PCR-CG: Point Cloud Registration via Deep Explicit Color and Geometry

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13670))

Included in the following conference series:

Abstract

In this paper, we introduce PCR-CG: a novel 3D point cloud registration module explicitly embedding the color signals into geometry representation. Different from the previous SOTA methods that used only geometry representation, our module is specifically designed to effectively correlate color and geometry for the point cloud registration task. Our key contribution is a 2D-3D cross-modality learning algorithm that embeds the features learned from color signals to the geometry representation. With our designed 2D-3D projection module, the pixel features in a square region centered at correspondences perceived from images are effectively correlated with point cloud representations. In this way, the overlap regions can be inferred not only from point cloud but also from the texture appearances. Adding color is non-trivial. We compare against a variety of baselines designed for adding color to 3D, such as exhaustively adding per-pixel features or RGB values in an implicit manner. We leverage Predator as our baseline method and incorporate our module into it. Our experimental results indicate a significant improvement on the 3DLoMatch benchmark. With the help of our module, we achieve a significant improvement of \(6.5\%\) registration recall with 5000 sampled points over our baseline method. To validate the effectiveness of 2D features on 3D, we ablate different 2D pre-trained networks and show a positive correlation between the pre-trained weights and task performance. Our study reveals a significant advantage of correlating explicit deep color features to the point cloud in the registration task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ao, S., Hu, Q., Yang, B., Markham, A., Guo, Y.: SpinNet: learning a general surface descriptor for 3D point cloud registration. In: CVPR, pp. 11753–11762 (2021)

    Google Scholar 

  2. Aoki, Y., Goforth, H., Srivatsan, R.A., Lucey, S.: PointNetLK: robust & efficient point cloud registration using pointnet. In: CVPR, pp. 7163–7172 (2019)

    Google Scholar 

  3. Armeni, I., et al.: 3D semantic parsing of large-scale indoor spaces. In: ICCV (2016)

    Google Scholar 

  4. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. TPAMI 5, 698–700 (1987)

    Article  Google Scholar 

  5. Bai, X., et al.: PointDSC: robust point cloud registration using deep spatial consistency. In: CVPR, pp. 15859–15869 (2021)

    Google Scholar 

  6. Bai, X., Luo, Z., Zhou, L., Fu, H., Quan, L., Tai, C.L.: D3Feat: joint learning of dense detection and description of 3D local features. In: CVPR, pp. 6359–6367 (2020)

    Google Scholar 

  7. Balntas, V., Doumanoglou, A., Sahin, C., Sock, J., Kouskouridas, R., Kim, T.K.: Pose guided RGBD feature learning for 3D object pose estimation. In: CVPR, pp. 3856–3864 (2017)

    Google Scholar 

  8. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. International Society for Optics and Photonics (1992)

    Google Scholar 

  9. Chang, A., et al.: Matterport3D: learning from RGB-D data in indoor environments. arXiv preprint arXiv:1709.06158 (2017)

  10. Choy, C., Park, J., Koltun, V.: Fully convolutional geometric features. In: CVPR, pp. 8958–8966 (2019)

    Google Scholar 

  11. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: CVPR (2017)

    Google Scholar 

  12. Dai, A., Nießner, M.: 3DMV: joint 3D-multi-view prediction for 3D semantic scene segmentation. In: ECCV, pp. 452–468 (2018)

    Google Scholar 

  13. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  14. El Banani, M., Gao, L., Johnson, J.: UnsupervisedR &R: unsupervised point cloud registration via differentiable rendering. In: CVPR, pp. 7129–7139 (2021)

    Google Scholar 

  15. El Banani, M., Johnson, J.: Bootstrap your own correspondences. In: ICCV, pp. 6433–6442 (2021)

    Google Scholar 

  16. Gojcic, Z., Zhou, C., Wegner, J.D., Wieser, A.: The perfect match: 3D point cloud matching with smoothed densities. In: CVPR, pp. 5545–5554 (2019)

    Google Scholar 

  17. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  19. Hou, J., Dai, A., Nießner, M.: 3D-SIS: 3D semantic instance segmentation of RGB-D scans. In: CVPR (2019)

    Google Scholar 

  20. Hou, J., Dai, A., Nießner, M.: RevealNet: seeing behind objects in RGB-D scans. In: CVPR (2020)

    Google Scholar 

  21. Hou, J., Xie, S., Graham, B., Dai, A., Nießner, M.: Pri3D: can 3D priors help 2D representation learning? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5693–5702 (2021)

    Google Scholar 

  22. Hu, W., Zhao, H., Jiang, L., Jia, J., Wong, T.T.: Bidirectional projection network for cross dimension scene understanding. In: CVPR, pp. 14373–14382 (2021)

    Google Scholar 

  23. Huang, S., Gojcic, Z., Usvyatsov, M., Wieser, A., Schindler, K.: PREDATOR: Registration of 3D point clouds with low overlap. In: CVPR, pp. 4267–4276 (2021)

    Google Scholar 

  24. Lahoud, J., Ghanem, B., Pollefeys, M., Oswald, M.R.: 3D instance segmentation via multi-task metric learning. In: ICCV (2019)

    Google Scholar 

  25. Liu, Y., Fan, Q., Zhang, S., Dong, H., Funkhouser, T., Yi, L.: Contrastive multimodal fusion with tupleinfonce. In: CVPR, pp. 754–763 (2021)

    Google Scholar 

  26. Liu, Y., Yi, L., Zhang, S., Fan, Q., Funkhouser, T., Dong, H.: P4contrast: contrastive learning with pairs of point-pixel pairs for RGB-D scene understanding. arXiv preprint arXiv:2012.13089 (2020)

  27. Liu, Z., Qi, X., Fu, C.W.: 3D-to-2D distillation for indoor scene parsing. In: CVPR, pp. 4464–4474 (2021)

    Google Scholar 

  28. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  29. Niethammer, M., Kwitt, R., Vialard, F.X.: Metric learning for image registration. In: ICCV, pp. 8463–8472 (2019)

    Google Scholar 

  30. Park, J., Zhou, Q.Y., Koltun, V.: Colored point cloud registration revisited. In: ICCV, pp. 143–152 (2017)

    Google Scholar 

  31. Qi, C.R., Chen, X., Litany, O., Guibas, L.J.: ImVoteNet: boosting 3D object detection in point clouds with image votes. In: CVPR (2020)

    Google Scholar 

  32. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep Hough voting for 3D object detection in point clouds. In: ICCV, pp. 9277–9286 (2019)

    Google Scholar 

  33. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  34. Qin, Z., Yu, H., Wang, C., Guo, Y., Peng, Y., Xu, K.: Geometric transformer for fast and robust point cloud registration. In: CVPR, pp. 11143–11152 (2022)

    Google Scholar 

  35. Revaud, J., et al.: R2D2: repeatable and reliable detector and descriptor. arXiv preprint arXiv:1906.06195 (2019)

  36. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152. IEEE (2001)

    Google Scholar 

  37. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: CVPR (2020)

    Google Scholar 

  38. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: CVPR, pp. 4938–4947 (2020)

    Google Scholar 

  39. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)

    Google Scholar 

  40. Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31

    Chapter  Google Scholar 

  41. Song, S., Xiao, J.: Sliding shapes for 3D object detection in depth images. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 634–651. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_41

    Chapter  Google Scholar 

  42. Srinivasan, P.P., Wang, T., Sreelal, A., Ramamoorthi, R., Ng, R.: Learning to synthesize a 4D RGBD light field from a single image. In: CVPR, pp. 2243–2251 (2017)

    Google Scholar 

  43. Stückler, J., Gutt, A., Behnke, S.: Combining the strengths of sparse interest point and dense image registration for RGB-D odometry. In: ISR/Robotik; International Symposium on Robotics, pp. 1–6. VDE (2014)

    Google Scholar 

  44. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: CVPR (2019)

    Google Scholar 

  45. Xu, C., et al.: Image2Point: 3D point-cloud understanding with 2D image pretrained models (2021)

    Google Scholar 

  46. Yu, H., Li, F., Saleh, M., Busam, B., Ilic, S.: CofiNet: reliable coarse-to-fine correspondences for robust pointcloud registration. In: NeurIPS, vol. 34 (2021)

    Google Scholar 

  47. Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T.: 3DMatch: learning local geometric descriptors from RGB-D reconstructions. In: CVPR (2017)

    Google Scholar 

  48. Zhou, Q., Sattler, T., Leal-Taixe, L.: Patch2Pix: epipolar-guided pixel-level correspondences. In: ICCV, pp. 4669–4678 (2021)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Joint Funds of Zhejiang NSFC (LTY22F020001) and Open Research Fund of State Key Laboratory of Transient Optics and Photonics. Yu Zhang is the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7041 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Yu, J., Huang, X., Zhou, W., Hou, J. (2022). PCR-CG: Point Cloud Registration via Deep Explicit Color and Geometry. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13670. Springer, Cham. https://doi.org/10.1007/978-3-031-20080-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20080-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20079-3

  • Online ISBN: 978-3-031-20080-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics