Skip to main content

SWFormer: Sparse Window Transformer for 3D Object Detection in Point Clouds

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13670))

Included in the following conference series:

Abstract

3D object detection in point clouds is a core component for modern robotics and autonomous driving systems. A key challenge in 3D object detection comes from the inherent sparse nature of point occupancy within the 3D scene. In this paper, we propose Sparse Window Transformer (SWFormer), a scalable and accurate model for 3D object detection, which can take full advantage of the sparsity of point clouds. Built upon the idea of window-based Transformers, SWFormer converts 3D points into sparse voxels and windows, and then processes these variable-length sparse windows efficiently using a bucketing scheme. In addition to self-attention within each spatial window, our SWFormer also captures cross-window correlation with multi-scale feature fusion and window shifting operations. To further address the unique challenge of detecting 3D objects accurately from sparse features, we propose a new voxel diffusion technique. Experimental results on the Waymo Open Dataset show our SWFormer achieves state-of-the-art 73.36 L2 mAPH on vehicle and pedestrian for 3D object detection on the official test set, outperforming all previous single-stage and two-stage models, while being much more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bello, I., Zoph, B., Vaswani, A., Shlens, J., Le, Q.V.: Attention augmented convolutional networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3286–3295 (2019)

    Google Scholar 

  2. Bewley, A., Sun, P., Mensink, T., Anguelov, D., Sminchisescu, C.: Range conditioned dilated convolutions for scale invariant 3D object detection. In: Conference on Robot Learning (2020)

    Google Scholar 

  3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  4. Chai, Y., et al.: To the point: efficient 3D object detection in the range image with graph convolution kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2021)

    Google Scholar 

  5. Cheng, S., et al.: Improving 3D object detection through progressive population based augmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 279–294. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_17

    Chapter  Google Scholar 

  6. Dai, Z., Liu, H., Le, Q., Tan, M.: CoatNet: marrying convolution and attention for all data sizes. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  8. Dosovitskiy, A., et al.: An image is worth \(16 \times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  9. Engel, N., Belagiannis, V., Dietmayer, K.: Point transformer. IEEE Access 9, 134826–134840 (2021)

    Article  Google Scholar 

  10. Fan, L., et al.: Embracing single stride 3D object detector with sparse transformer. arXiv preprint arXiv:2112.06375 (2021)

  11. Fan, L., Xiong, X., Wang, F., Wang, N., Zhang, Z.: RangeDet: in defense of range view for lidar-based 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2918–2927 (2021)

    Google Scholar 

  12. Ge, R., et al.: AFDet: anchor free one stage 3D object detection. arXiv preprint arXiv:2006.12671 (2020)

  13. Graham, B., van der Maaten, L.: Submanifold sparse convolutional networks. arXiv preprint arXiv:1706.01307 (2017)

  14. Guizilini, V., Ambrus, R., Pillai, S., Raventos, A., Gaidon, A.: 3D packing for self-supervised monocular depth estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  15. Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: CVPR (2019)

    Google Scholar 

  18. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 734–750 (2018)

    Google Scholar 

  19. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  20. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  21. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: CVPR (2021)

    Google Scholar 

  22. Mao, J., et al.: Voxel transformer for 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3164–3173 (2021)

    Google Scholar 

  23. Meyer, G.P., Laddha, A., Kee, E., Vallespi-Gonzalez, C., Wellington, C.K.: LaserNet: an efficient probabilistic 3D object detector for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12677–12686 (2019)

    Google Scholar 

  24. Misra, I., Girdhar, R., Joulin, A.: An end-to-end transformer model for 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2906–2917 (2021)

    Google Scholar 

  25. Ngiam, J., et al.: StarNet: targeted computation for object detection in point clouds. arXiv preprint arXiv:1908.11069 (2019)

  26. Pan, X., Xia, Z., Song, S., Li, L.E., Huang, G.: 3D object detection with pointformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7463–7472 (2021)

    Google Scholar 

  27. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  28. Qi, C.R., et al.: Offboard 3D object detection from point cloud sequences. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6134–6144 (2021)

    Google Scholar 

  29. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: NeurIPS (2017)

    Google Scholar 

  30. Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Levskaya, A., Shlens, J.: Stand-alone self-attention in vision models. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  31. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  32. Sabne, A.: XLA: compiling machine learning for peak performance (2020)

    Google Scholar 

  33. Shi, S., et al.: PV-RCNN: point-voxel feature set abstraction for 3D object detection. In: CVPR (2020)

    Google Scholar 

  34. Shi, S., et al.: PV-RCNN++: point-voxel feature set abstraction with local vector representation for 3D object detection. arXiv preprint arXiv:2102.00463 (2021)

  35. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: CVPR (2019)

    Google Scholar 

  36. Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: CVPR (2020)

    Google Scholar 

  37. Sun, P., et al.: RSN: range sparse net for efficient, accurate lidar 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5725–5734 (2021)

    Google Scholar 

  38. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  39. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  40. Wang, Y., et al.: Pillar-based object detection for autonomous driving. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 18–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_2

    Chapter  Google Scholar 

  41. Waymo: Waymo’s 5th generation driver. https://blog.waymo.com/2020/03/introducing-5th-generation-waymo-driver.html

  42. Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors (2018)

    Google Scholar 

  43. Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3D object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11784–11793 (2021)

    Google Scholar 

  44. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)

    Google Scholar 

  45. Zhou, D., et al.: IoU loss for 2D/3D object detection (2019)

    Google Scholar 

  46. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  47. Zhou, Y., et al.: End-to-end multi-view fusion for 3D object detection in lidar point clouds. In: CORL (2019)

    Google Scholar 

  48. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3d object detection. In: CVPR (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Sun .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2443 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, P. et al. (2022). SWFormer: Sparse Window Transformer for 3D Object Detection in Point Clouds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13670. Springer, Cham. https://doi.org/10.1007/978-3-031-20080-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20080-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20079-3

  • Online ISBN: 978-3-031-20080-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics