Abstract
In this paper, we propose to go beyond the well-established approach to vision-based localization that relies on visual descriptor matching between a query image and a 3D point cloud. While matching keypoints via visual descriptors makes localization highly accurate, it has significant storage demands, raises privacy concerns and requires update to the descriptors in the long-term. To elegantly address those practical challenges for large-scale localization, we present GoMatch, an alternative to visual-based matching that solely relies on geometric information for matching image keypoints to maps, represented as sets of bearing vectors. Our novel bearing vectors representation of 3D points, significantly relieves the cross-modal challenge in geometric-based matching that prevented prior work to tackle localization in a realistic environment. With additional careful architecture design, GoMatch improves over prior geometric-based matching work with a reduction of (\(10.67\,\text {m}, 95.7^{\circ }\)) and (\(1.43\,\text {m}\), \(34.7^{\circ }\)) in average median pose errors on Cambridge Landmarks and 7-Scenes, while requiring as little as \(1.5/1.7\%\) of storage capacity in comparison to the best visual-based matching methods. This confirms its potential and feasibility for real-world localization and opens the door to future efforts in advancing city-scale visual localization methods that do not require storing visual descriptors.
Q. Zhou and S. Agostinho—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Storage as in non-volatile preservation of data, in contrast to volatile memory.
References
Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Balntas, V., Li, S., Prisacariu, V.: RelocNet: continuous metric learning relocalisation using neural nets. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 782–799. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_46
Bhowmik, A., Gumhold, S., Rother, C., Brachmann, E.: Reinforced feature points: optimizing feature detection and description for a high-level task. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4948–4957 (2020)
Blanton, H., Greenwell, C., Workman, S., Jacobs, N.: Extending absolute pose regression to multiple scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2020)
Brachmann, E., et al.: DSAC - differentiable RANSAC for camera localization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Brachmann, E., Rother, C.: Learning less is more - 6D camera localization via 3D surface regression. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Brachmann, E., Rother, C.: Expert sample consensus applied to camera re-localization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7525–7534 (2019)
Brachmann, E., Rother, C.: Neural-guided RANSAC: learning where to sample model hypotheses. In: IEEE International Conference on Computer Vision (ICCV), pp. 4322–4331 (2019)
Brown, M., Windridge, D., Guillemaut, J.-Y.: Globally optimal 2D-3D registration from points or lines without correspondences. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)
Campbell, D., Liu, L., Gould, S.: Solving the blind perspective-n-point problem end-to-end with robust differentiable geometric optimization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 244–261. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_15
Campbell, D., Petersson, L., Kneip, L., Li, H.: Globally-optimal inlier set maximisation for simultaneous camera pose and feature correspondence. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)
Campbell, D., Petersson, L., Kneip, L., Li, H., Gould, S.: The alignment of the spheres: globally-optimal spherical mixture alignment for camera pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Camposeco, F., Cohen, A., Pollefeys, M., Sattler, T.: Hybrid scene compression for visual localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Cao, S., Snavely, N.: Minimal scene descriptions from structure from motion models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)
Cavallari, T., Bertinetto, L., Mukhoti, J., Torr, P., Golodetz, S.: Let’s take this online: adapting scene coordinate regression network predictions for online RGB-D camera relocalisation. In: 2019 International Conference on 3D Vision (3DV), pp. 564–573 (2019)
Chelani, K., Kahl, F., Sattler, T.: How privacy-preserving are line clouds? Recovering scene details from 3D lines. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15668–15678 (2021)
Cheng, W., Lin, W., Chen, K., Zhang, X.: Cascaded parallel filtering for memory-efficient image-based localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Burges, C.J., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26. Curran Associates Inc. (2013)
David, P., Dementhon, D., Duraiswami, R., Samet, H.: SoftPOSIT: simultaneous pose and correspondence determination. Int. J. Comput. Vis. 59(3), 259–284 (2004)
DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. In: CVPR Workshops, pp. 224–236 (2018)
Ding, M., Wang, Z., Sun, J., Shi, J., Luo, P.: CamNet: coarse-to-fine retrieval for camera re-localization. In: IEEE International Conference on Computer Vision (ICCV), pp. 2871–2880 (2019)
Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates Inc. (2016)
Dosovitskiy, A., Brox, T.: Inverting visual representations with convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4829–4837 (2016)
Dusmanu, M., Miksik, O., Schonberger, J.L., Pollefeys, M.: Cross-descriptor visual localization and mapping. In: IEEE International Conference on Computer Vision (ICCV), pp. 6058–6067 (2021)
Dusmanu, M., et al.: D2-Net: a trainable CNN for joint detection and description of local features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Dusmanu, M., Schönberger, J.L., Sinha, S.N., Pollefeys, M.: Privacy-preserving image features via adversarial affine subspace embeddings. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Gao, X.-S., Hou, X.-R., Tang, J., Cheng, H.-F.: Complete solution classification for the perspective-three-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 930–943 (2003)
Geppert, M., Larsson, V., Speciale, P., Schönberger, J.L., Pollefeys, M.: Privacy preserving structure-from-motion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 333–350. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_20
Geppert, M., Larsson, V., Speciale, P., Schonberger, J.L., Pollefeys, M.: Privacy preserving localization and mapping from uncalibrated cameras. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1809–1819 (2021)
Germain, H., Bourmaud, G., Lepetit, V.: S2DNet: learning accurate correspondences for sparse-to-dense feature matching. In: European Conference on Computer Vision (ECCV) (2020)
Huang, S., Gojcic, Z., Usvyatsov, M., Wieser, A., Schindler, K.: PREDATOR: registration of 3D point clouds with low overlap. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4267–4276 (2021)
Ke, T., Roumeliotis, S.I.: An efficient algebraic solution to the perspective-three-point problem. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Kendall, A., Cipolla, R.: Modelling uncertainty in deep learning for camera relocalization. In: IEEE International Conference on Robotics and Automation (ICRA) (2016)
Kendall, A., Cipolla, R.: Geometric loss functions for camera pose regression with deep learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DoF camera relocalization. In: IEEE International Conference on Computer Vision (ICCV) (2015)
Kneip, L., Scaramuzza, D., Siegwart, R.: A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)
Laskar, Z., Melekhov, I., Kalia, S., Kannala, J.: Camera relocalization by computing pairwise relative poses using convolutional neural network. In: IEEE International Conference on Computer Vision (ICCV) Workshops (2017)
Li, X., Wang, S., Zhao, Y., Verbeek, J., Kannala, J.: Hierarchical scene coordinate classification and regression for visual localization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11983–11992 (2020)
Li, Z., Snavely, N.: MegaDepth: learning single-view depth prediction from internet photos. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Liu, L., Campbell, D., Li, H., Zhou, D., Song, X., Yang, R.: Learning 2D-3D correspondences to solve the blind perspective-n-point problem (2020)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Luo, Z., et al.: ASLFeat: learning local features of accurate shape and localization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6589–6598 (2020)
Mera-Trujillo, M., Smith, B., Fragoso, V.: Efficient scene compression for visual-based localization. In: 2020 International Conference on 3D Vision (3DV), pp. 1–10 (2020)
Yi, K.M., Trulls, E., Ono, Y., Lepetit, V., Salzmann, M., Fua, P.: Learning to find good correspondences. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2666–2674 (2018)
Moreno-Noguer, F., Lepetit, V., Fua, P.: Pose priors for simultaneously solving alignment and correspondence. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 405–418. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_30
Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)
Ng, T., et al.: NinjaDesc: content-concealing visual descriptors via adversarial learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12797–12807 (2022)
Pittaluga, F., Koppal, S.J., Kang, S.B., Sinha, S.N.: Revealing scenes by inverting structure from motion reconstructions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 145–154 (2019)
Radwan, N., Valada, A., Burgard, W.: VLocNet++: deep multitask learning for semantic visual localization and odometry. IEEE Robot. Autom. Lett. 3(4), 4407–4414 (2018)
Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M.: From coarse to fine: robust hierarchical localization at large scale. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Sarlin, P.-E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4938–4947 (2020)
Sarlin, P.-E., et al.: Back to the feature: learning robust camera localization from pixels to pose. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3247–3257 (2021)
Sattler, T., Leibe, B., Kobbelt, L.: Efficient & effective prioritized matching for large-scale image-based localization. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1744–1756 (2017)
Sattler, T., et al.: Benchmarking 6DoF outdoor visual localization in changing conditions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8601–8610 (2018)
Sattler, T., et al.: Are large-scale 3D models really necessary for accurate visual localization? In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Sattler, T., Zhou, Q., Pollefeys, M., Leal-Taixe, L.: Understanding the limitations of CNN-based absolute camera pose regression. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Schönberger, J.L., Frahm, J.-M.: Structure-from-motion revisited. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Schönberger, J.L., Pollefeys, M., Geiger, A., Sattler, T.: Semantic visual localization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31
Shavit, Y., Ferens, R., Keller, Y.: Learning multi-scene absolute pose regression with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2733–2742 (2021)
Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.: Scene coordinate regression forests for camera relocalization in RGB-D images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2930–2937 (2013)
Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices. Pac. J. Math. 21(2), 343–348 (1967)
Speciale, P., Schonberger, J.L., Kang, S.B., Sinha, S.N., Pollefeys, M.: Privacy preserving image-based localization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5493–5503 (2019)
Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X.: LoFTR: detector-free local feature matching with transformers. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8922–8931 (2021)
Sun, W., Jiang, W., Trulls, E., Tagliasacchi, A., Yi, K.M.: ACNe: attentive context normalization for robust permutation-equivariant learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Taira, H., et al.: InLoc: indoor visual localization with dense matching and view synthesis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Toft, C., et al.: Long-term visual localization revisited. IEEE Trans. Pattern Anal. Mach. Intell. 44(4), 2074–2088 (2022)
Torii, A., Arandjelovic, R., Sivic, J., Okutomi, M., Pajdla, T.: 24/7 place recognition by view synthesis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1808–1817 (2015)
Tran, N.-T., et al.: On-device scalable image-based localization via prioritized cascade search and fast one-many RANSAC. IEEE Trans. Image Process. 28(4), 1675–1690 (2019)
Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates Inc. (2017)
Walch, F., Hazirbas, C., Leal-Taixe, L., Sattler, T., Hilsenbeck, S., Cremers, D.: Image-based localization using LSTMs for structured feature correlation. In: IEEE International Conference on Computer Vision (ICCV) (2017)
Wang, Q., Zhou, X., Hariharan, B., Snavely, N.: Learning feature descriptors using camera pose supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 757–774. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_44
Yang, L., Bai, Z., Tang, C., Li, H., Furukawa, Y., Tan, P.: SANet: scene agnostic network for camera localization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 42–51 (2019)
Zhang, J., et al.: Learning two-view correspondences and geometry using order-aware network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Zhou, Q., Sattler, T., Pollefeys, M., Leal-Taixe, L.: To learn or not to learn: visual localization from essential matrices. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3319–3326. IEEE (2020)
Acknowledgments
This research was partially funded by the Humboldt Foundation through the Sofja Kovalevskaya Award.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, Q., Agostinho, S., Ošep, A., Leal-Taixé, L. (2022). Is Geometry Enough for Matching in Visual Localization?. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13670. Springer, Cham. https://doi.org/10.1007/978-3-031-20080-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-20080-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20079-3
Online ISBN: 978-3-031-20080-9
eBook Packages: Computer ScienceComputer Science (R0)