Abstract
Despite great progress in object detection, most existing methods work only on a limited set of object categories, due to the tremendous human effort needed for bounding-box annotations of training data. To alleviate the problem, recent open vocabulary and zero-shot detection methods attempt to detect novel object categories beyond those seen during training. They achieve this goal by training on a pre-defined base categories to induce generalization to novel objects. However, their potential is still constrained by the small set of base categories available for training. To enlarge the set of base classes, we propose a method to automatically generate pseudo bounding-box annotations of diverse objects from large-scale image-caption pairs. Our method leverages the localization ability of pre-trained vision-language models to generate pseudo bounding-box labels and then directly uses them for training object detectors. Experimental results show that our method outperforms the state-of-the-art open vocabulary detector by 8% AP on COCO novel categories, by 6.3% AP on PASCAL VOC, by 2.3% AP on Objects365 and by 2.8% AP on LVIS. Code is available here.
M.Gao and C. Xing contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use LVIS v0.5, since the validation set of LVIS v1.0 contains images from COCO train 2017 which our method may finetune on in some experiments.
- 2.
https://github.com/salesforce/ALBEF (BSD-3-Clause License).
- 3.
https://github.com/alirezazareian/ovr-cnn (MIT License).
References
Bansal, A., Sikka, K., Sharma, G., Chellappa, R., Divakaran, A.: Zero-shot object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 397–414. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_24
Bilen, H., Vedaldi, A.: Weakly supervised deep detection networks. In: CVPR, pp. 2846–2854 (2016)
Chen, X., et al.: Microsoft COCO captions: data collection and evaluation server. arXiv preprint arXiv:1504.00325 (2015)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Everingham, M.: The pascal visual object classes challenge, (voc2007) results (2007). http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/index.html
Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)
Gao, M., Li, A., Yu, R., Morariu, V.I., Davis, L.S.: C-WSL: count-guided weakly supervised localization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 155–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_10
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Zero-shot detection via vision and language knowledge distillation. arXiv preprint arXiv:2104.13921 (2021)
Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. arXiv preprint arXiv:2102.05918 (2021)
Joseph, K., Khan, S., Khan, F.S., Balasubramanian, V.N.: Towards open world object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5830–5840 (2021)
Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)
Li, J., Selvaraju, R.R., Gotmare, A.D., Joty, S., Xiong, C., Hoi, S.: Align before fuse: vision and language representation learning with momentum distillation. In: NeurIPS (2021)
Li, L.H., Yatskar, M., Yin, D., Hsieh, C.J., Chang, K.W.: VisualBERT: a simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557 (2019)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Ordonez, V., Kulkarni, G., Berg, T.: Im2Text: describing images using 1 million captioned photographs. Adv. Neural. Inf. Process. Syst. 24, 1143–1151 (2011)
Papageorgiou, C., Poggio, T.: A trainable system for object detection. Int. J. Comput. Vis. 38(1), 15–33 (2000)
Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 555–562. IEEE (1998)
Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)
Rahman, S., Khan, S., Barnes, N.: Improved visual-semantic alignment for zero-shot object detection. In: AAAI, pp. 11932–11939 (2020)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Shao, S., et al.: Objects365: a large-scale, high-quality dataset for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8430–8439 (2019)
Sun, P., et al.: Sparse R-CNN: end-to-end object detection with learnable proposals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14454–14463 (2021)
Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection (2013)
Tan, H., Bansal, M.: LXMERT: learning cross-modality encoder representations from transformers. arXiv preprint arXiv:1908.07490 (2019)
Tang, P., et al.: PCL: proposal cluster learning for weakly supervised object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(1), 176–191 (2018)
Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. IJCV 104(2), 154–171 (2013)
Xie, E., et al.: DetCo: unsupervised contrastive learning for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8392–8401 (2021)
Ye, K., Zhang, M., Kovashka, A., Li, W., Qin, D., Berent, J.: Cap2Det: learning to amplify weak caption supervision for object detection. In: ICCV, pp. 9686–9695 (2019)
Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3D object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11784–11793 (2021)
Zareian, A., Rosa, K.D., Hu, D.H., Chang, S.F.: Open-vocabulary object detection using captions. In: CVPR, pp. 14393–14402 (2021)
Zhu, P., Wang, H., Saligrama, V.: Zero shot detection. IEEE Trans. Circuits Syst. Video Technol. 30(4), 998–1010 (2019)
Zhu, P., Wang, H., Saligrama, V.: Don’t even look once: synthesizing features for zero-shot detection. In: CVPR, pp. 11693–11702 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gao, M. et al. (2022). Open Vocabulary Object Detection with Pseudo Bounding-Box Labels. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13670. Springer, Cham. https://doi.org/10.1007/978-3-031-20080-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-20080-9_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20079-3
Online ISBN: 978-3-031-20080-9
eBook Packages: Computer ScienceComputer Science (R0)