Skip to main content

RayTran: 3D Pose Estimation and Shape Reconstruction of Multiple Objects from Videos with Ray-Traced Transformers

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13670))

Included in the following conference series:

Abstract

We propose a transformer-based neural network architecture for multi-object 3D reconstruction from RGB videos. It relies on two alternative ways to represent its knowledge: as a global 3D grid of features and an array of view-specific 2D grids. We progressively exchange information between the two with a dedicated bidirectional attention mechanism. We exploit knowledge about the image formation process to significantly sparsify the attention weight matrix, making our architecture feasible on current hardware, both in terms of memory and computation. We attach a DETR-style head [9] on top of the 3D feature grid in order to detect the objects in the scene and to predict their 3D pose and 3D shape. Compared to previous methods, our architecture is single stage, end-to-end trainable, and it can reason holistically about a scene from multiple video frames without needing a brittle tracking step. We evaluate our method on the challenging Scan2CAD dataset [3], where we outperform (1) state-of-the-art methods [15, 34, 35, 39] for 3D object pose estimation from RGB videos; and (2) a strong alternative method combining Multi-View Stereo [17] with RGB-D CAD alignment [4].

M. J. Tyszkiewicz—Work done while at Google Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. In: CVPR (2008)

    Google Scholar 

  2. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: ViViT: a video vision transformer. In: CVPR (2021)

    Google Scholar 

  3. Avetisyan, A., Dahnert, M., Dai, A., Savva, M., Chang, A.X., Nießner, M.: Scan2CAD: learning CAD model alignment in RGB-D scans. In: CVPR (2019)

    Google Scholar 

  4. Avetisyan, A., Dai, A., Nießner, M.: End-to-end CAD model retrieval and 9DoF alignment in 3D scans. In: ICCV (2019)

    Google Scholar 

  5. Avetisyan, A., Khanova, T., Choy, C., Dash, D., Dai, A., Nießner, M.: SceneCAD: predicting object alignments and layouts in RGB-D scans. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 596–612. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_36

    Chapter  Google Scholar 

  6. Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: ICCV (2019)

    Google Scholar 

  7. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: ICML (2021)

    Google Scholar 

  8. Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Robust tracking-by-detection using a detector confidence particle filter. In: ICCV (2009)

    Google Scholar 

  9. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  10. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv:1512.03012 (2015)

  11. Chen, Z., Tagliasacchi, A., Zhang, H.: BSP-Net: generating compact meshes via binary space partitioning. In: CVPR (2020)

    Google Scholar 

  12. Cheng, B., Schwing, A.G., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation. In: NeurIPS (2021)

    Google Scholar 

  13. Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38

    Chapter  Google Scholar 

  14. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: CVPR (2017)

    Google Scholar 

  15. Rukhovich, D., Vorontsova, A., Konushin, A.: ImVoxelNet: image to voxels projection for monocular and multi-view general-purpose 3D object detection. In: WACV (2022)

    Google Scholar 

  16. Dosovitskiy, A., et al.: An image is worth \(16\times 16\) words: transformers for image recognition at scale. In: ICLR (2020)

    Google Scholar 

  17. Duzceker, A., Galliani, S., Vogel, C., Speciale, P., Dusmanu, M., Pollefeys, M.: DeepVideoMVS: multi-view stereo on video with recurrent spatio-temporal fusion. In: CVPR (2021)

    Google Scholar 

  18. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. TPAMI 40(3), 611–625 (2017)

    Article  Google Scholar 

  19. Engelmann, F., Rematas, K., Leibe, B., Ferrari, V.: From points to multi-object 3D reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4588–4597 (2021)

    Google Scholar 

  20. Fei, X., Soatto, S.: Visual-inertial object detection and mapping. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 318–334. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_19

    Chapter  Google Scholar 

  21. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24672-5_18

    Chapter  Google Scholar 

  22. Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and generative vector representation for objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_29

    Chapter  Google Scholar 

  23. Gkioxari, G., Malik, J., Johnson, J.: Mesh R-CNN. In: ICCV (2019)

    Google Scholar 

  24. Gümeli, C., Dai, A., Nießner, M.: ROCA: robust CAD model retrieval and alignment from a single image. arXiv:2112.01988 (2021)

  25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  26. Hu, H.N., et al.: Joint monocular 3D vehicle detection and tracking. In: ICCV (2019)

    Google Scholar 

  27. Huang, S., Qi, S., Zhu, Y., Xiao, Y., Xu, Y., Zhu, S.-C.: Holistic 3D scene parsing and reconstruction from a single RGB image. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 194–211. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_12

    Chapter  Google Scholar 

  28. Izadinia, H., Seitz, S.M.: Scene recomposition by learning-based ICP. In: CVPR (2020)

    Google Scholar 

  29. Izadinia, H., Shan, Q., Seitz, S.M.: Im2CAD. In: CVPR (2017)

    Google Scholar 

  30. Kundu, A., Li, Y., Rehg, J.M.: 3D-RCNN: instance-level 3D object reconstruction via render-and-compare. In: CVPR (2018)

    Google Scholar 

  31. Kuo, W., Angelova, A., Lin, T.-Y., Dai, A.: Mask2CAD: 3D shape prediction by learning to segment and retrieve. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 260–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_16

    Chapter  Google Scholar 

  32. Kuo, W., Angelova, A., Lin, T.Y., Dai, A.: Patch2CAD: patchwise embedding learning for in-the-wild shape retrieval from a single image. In: ICCV (2021)

    Google Scholar 

  33. Lewiner, T., Lopes, H., Vieira, A.W., Tavares, G.: Efficient implementation of marching cubes’ cases with topological guarantees. J. Graph. Tools 8(2), 1–15 (2003)

    Article  Google Scholar 

  34. Li, K., et al.: ODAM: object detection, association, and mapping using posed RGB video. In: ICCV (2021)

    Google Scholar 

  35. Li, K., Rezatofighi, H., Reid, I.: MOLTR: multiple object localization, tracking and reconstruction from monocular RGB videos. IEEE Robot. Autom. Lett. 6(2), 3341–3348 (2021)

    Article  Google Scholar 

  36. Li, Y., Dai, A., Guibas, L., Nießner, M.: Database-assisted object retrieval for real-time 3D reconstruction. In: Computer Graphics Forum, vol. 34. Wiley Online Library (2015)

    Google Scholar 

  37. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  38. Mahendran, S., Ali, H., Vidal, R.: A mixed classification-regression framework for 3D pose estimation from 2D images. arXiv:1805.03225 (2018)

  39. Maninis, K.K., Popov, S., Niesser, M., Ferrari, V.: Vid2CAD: CAD model alignment using multi-view constraints from videos. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  40. Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: TrackFormer: multi-object tracking with transformers. arXiv (2021)

    Google Scholar 

  41. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR (2019)

    Google Scholar 

  42. Mousavian, A., Anguelov, D., Flynn, J., Kosecka, J.: 3D bounding box estimation using deep learning and geometry. In: CVPR (2017)

    Google Scholar 

  43. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  44. Nan, L., Xie, K., Sharf, A.: A search-classify approach for cluttered indoor scene understanding. ACM Trans. Graph. (TOG) 31(6), 1–10 (2012)

    Article  Google Scholar 

  45. Nicholson, L., Milford, M., Sünderhauf, N.: QuadricSLAM: dual quadrics from object detections as landmarks in object-oriented SLAM. RA-L 4(1), 1–8 (2018)

    Google Scholar 

  46. Nie, Y., Han, X., Guo, S., Zheng, Y., Chang, J., Zhang, J.J.: Total3DUnderstanding: joint layout, object pose and mesh reconstruction for indoor scenes from a single image. In: CVPR (2020)

    Google Scholar 

  47. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: CVPR (2019)

    Google Scholar 

  48. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  49. Pollefeys, M., Koch, R., Van Gool, L.: Self-calibration and metric reconstruction inspite of varying and unknown intrinsic camera parameters. IJCV 32(1), 7–25 (1999). https://doi.org/10.1023/A:1008109111715

    Article  Google Scholar 

  50. Popov, S., Bauszat, P., Ferrari, V.: CoReNet: coherent 3D scene reconstruction from a single RGB image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 366–383. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_22

    Chapter  Google Scholar 

  51. Qian, S., Jin, L., Fouhey, D.F.: Associative3D: volumetric reconstruction from sparse views. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 140–157. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_9

    Chapter  Google Scholar 

  52. Runz, M., et al.: FroDO: from detections to 3D objects. In: CVPR (2020)

    Google Scholar 

  53. Salas-Moreno, R.F., Newcombe, R.A., Strasdat, H., Kelly, P.H., Davison, A.J.: SLAM++: simultaneous localisation and mapping at the level of objects. In: CVPR (2013)

    Google Scholar 

  54. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)

    Google Scholar 

  55. Shan, M., Feng, Q., Jau, Y.Y., Atanasov, N.: ELLIPSDF: joint object pose and shape optimization with a bi-level ellipsoid and signed distance function description. In: ICCV (2021)

    Google Scholar 

  56. Shao, T., Xu, W., Zhou, K., Wang, J., Li, D., Guo, B.: An interactive approach to semantic modeling of indoor scenes with an RGBD camera. ACM Trans. Graph. (TOG) 31(6), 1–11 (2012)

    Article  Google Scholar 

  57. Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: transformer for semantic segmentation. In: ICCV (2021)

    Google Scholar 

  58. Tulsiani, S., Gupta, S., Fouhey, D., Efros, A.A., Malik, J.: Factoring shape, pose, and layout from the 2D image of a 3D scene. In: CVPR (2018)

    Google Scholar 

  59. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  60. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.-G.: Pixel2Mesh: generating 3D mesh models from single RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 55–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_4

    Chapter  Google Scholar 

  61. Wu, C.: Towards linear-time incremental structure from motion. In: 3DV (2013)

    Google Scholar 

  62. Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: NIPS (2016)

    Google Scholar 

  63. Xie, H., Yao, H., Zhang, S., Zhou, S., Sun, W.: Pix2Vox++: multi-scale context-aware 3D object reconstruction from single and multiple images. IJCV 128(12), 2919–2935 (2020). https://doi.org/10.1007/s11263-020-01347-6

    Article  Google Scholar 

  64. Yang, S., Scherer, S.: CubeSLAM: monocular 3-D object SLAM. IEEE Trans. Robot. 35(4), 925–938 (2019)

    Article  Google Scholar 

  65. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: CVPR (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevis-Kokitsi Maninis .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 11651 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tyszkiewicz, M.J., Maninis, KK., Popov, S., Ferrari, V. (2022). RayTran: 3D Pose Estimation and Shape Reconstruction of Multiple Objects from Videos with Ray-Traced Transformers. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13670. Springer, Cham. https://doi.org/10.1007/978-3-031-20080-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20080-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20079-3

  • Online ISBN: 978-3-031-20080-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics