Skip to main content

Open-Vocabulary DETR with Conditional Matching

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13669))

Included in the following conference series:

Abstract

Open-vocabulary object detection, which is concerned with the problem of detecting novel objects guided by natural language, has gained increasing attention from the community. Ideally, we would like to extend an open-vocabulary detector such that it can produce bounding box predictions based on user inputs in form of either natural language or exemplar image. This offers great flexibility and user experience for human-computer interaction. To this end, we propose a novel open-vocabulary detector based on DETR—hence the name OV-DETR—which, once trained, can detect any object given its class name or an exemplar image. The biggest challenge of turning DETR into an open-vocabulary detector is that it is impossible to calculate the classification cost matrix of novel classes without access to their labeled images. To overcome this challenge, we formulate the learning objective as a binary matching one between input queries (class name or exemplar image) and the corresponding objects, which learns useful correspondence to generalize to unseen queries during testing. For training, we choose to condition the Transformer decoder on the input embeddings obtained from a pre-trained vision-language model like CLIP, in order to enable matching for both text and image queries. With extensive experiments on LVIS and COCO datasets, we demonstrate that our OV-DETR—the first end-to-end Transformer-based open-vocabulary detector—achieves non-trivial improvements over current state of the arts. Code is available at https://github.com/yuhangzang/OV-DETR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bansal, A., Sikka, K., Sharma, G., Chellappa, R., Divakaran, A.: Zero-shot object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 397–414. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_24

    Chapter  Google Scholar 

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Chen, K., Kovvuri, R., Nevatia, R.: Query-guided regression network with context policy for phrase grounding. In: ICCV, pp. 824–832 (2017)

    Google Scholar 

  4. Dai, Z., Cai, B., Lin, Y., Chen, J.: UP-DETR: unsupervised pre-training for object detection with transformers. In: CVPR, pp. 1601–1610 (2021)

    Google Scholar 

  5. Deng, C., Wu, Q., Wu, Q., Hu, F., Lyu, F., Tan, M.: Visual grounding via accumulated attention. In: CVPR, pp. 7746–7755 (2018)

    Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  7. Du, Y., Wei, F., Zhang, Z., Shi, M., Gao, Y., Li, G.: Learning to prompt for open-vocabulary object detection with vision-language model. In: CVPR, pp. 14084–14093 (2022)

    Google Scholar 

  8. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)

    Article  Google Scholar 

  9. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: CVPR, pp. 1–8. Ieee (2008)

    Google Scholar 

  10. Frome, A., et al.: Devise: A deep visual-semantic embedding model. In: NeurIPS (2013)

    Google Scholar 

  11. Gao, P., Zheng, M., Wang, X., Dai, J., Li, H.: Fast convergence of DETR with spatially modulated co-attention. In: ICCV, pp. 3621–3630 (2021)

    Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS, vol. 27 (2014)

    Google Scholar 

  13. Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-vocabulary object detection via vision and language knowledge distillation. In: ICLR (2022)

    Google Scholar 

  14. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: CVPR, pp. 5356–5364 (2019)

    Google Scholar 

  15. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV. pp. 2961–2969 (2017)

    Google Scholar 

  16. Kamath, A., Singh, M., LeCun, Y., Synnaeve, G., Misra, I., Carion, N.: Mdetr-modulated detection for end-to-end multi-modal understanding. In: ICCV. pp. 1780–1790 (2021)

    Google Scholar 

  17. Kim, D., Lin, T.Y., Angelova, A., Kweon, I.S., Kuo, W.: Learning open-world object proposals without learning to classify. Rob. Autom. Lett. 7(2), :1-1 (2022)

    Google Scholar 

  18. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, S., Xiao, T., Li, H., Zhou, B., Yue, D., Wang, X.: Person search with natural language description. In: CVPR, pp. 1970–1979 (2017)

    Google Scholar 

  20. Li, Z., Yao, L., Zhang, X., Wang, X., Kanhere, S., Zhang, H.: Zero-shot object detection with textual descriptions. In: AAAI, pp. 8690–8697 (2019)

    Google Scholar 

  21. Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2999–3007 (2017)

    Google Scholar 

  22. Liu, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  23. Lin, T., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  24. Meng, D., et al.: Conditional DETR for fast training convergence. In: ICCV, pp. 3651–3660 (2021)

    Google Scholar 

  25. Papageorgiou, C., Poggio, T.: A trainable system for object detection. Int. J. Comput. Vis. 38(1), 15–33 (2000)

    Article  MATH  Google Scholar 

  26. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)

    Google Scholar 

  27. Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)

  28. Rahman, T., Chou, S.H., Sigal, L., Carenini, G.: An improved attention for visual question answering. In: CVPR, pp. 1653–1662 (2021)

    Google Scholar 

  29. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. In: NeurIPS, vol. 28, 91–99 (2015)

    Google Scholar 

  30. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: CVPR, pp. 658–666 (2019)

    Google Scholar 

  31. Shizhen, Z., et al.: GtNet: generative transfer network for zero-shot object detection. In: AAAI (2020)

    Google Scholar 

  32. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: NeurIPS, vol. 26 (2013)

    Google Scholar 

  33. Tay, Y., Bahri, D., Yang, L., Metzler, D., Juan, D.C.: Sparse sinkhorn attention. In: ICML, pp. 9438–9447. PMLR (2020)

    Google Scholar 

  34. Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer: self-attention with linear complexity. arXiv preprint arXiv:2006.04768 (2020)

  35. Xie, J., Zheng, S.: ZSD-yolo: zero-shot yolo detection using vision-language knowledgedistillationa. arXiv preprint arXiv:2109.12066 (2021)

  36. Zareian, A., Rosa, K.D., Hu, D.H., Chang, S.F.: Open-vocabulary object detection using captions. In: CVPR, pp. 14393–14402 (2021)

    Google Scholar 

  37. Zhang, Y., Zhou, K., Liu, Z.: Neural prompt search. arXiv (2022)

    Google Scholar 

  38. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Conditional prompt learning for vision-language models. In: CVPR (2022)

    Google Scholar 

  39. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. In: IJCV (2022)

    Google Scholar 

  40. Zhu, P., Wang, H., Saligrama, V.: Don’t even look once: Synthesizing features for zero-shot detection. In: CVPR, pp. 11693–11702 (2020)

    Google Scholar 

  41. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: ICLR (2020)

    Google Scholar 

Download references

Acknowledgements

This study is supported under the RIE2020 Industry Alignment Fund Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s). It is also partly supported by the NTU NAP grant and Singapore MOE AcRF Tier 2 (MOE-T2EP20120-0001). This work was supported by SenseTime SenseCore AI Infrastructure-AIDC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Change Loy .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 924 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zang, Y., Li, W., Zhou, K., Huang, C., Loy, C.C. (2022). Open-Vocabulary DETR with Conditional Matching. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20077-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20076-2

  • Online ISBN: 978-3-031-20077-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics