Skip to main content

Point-to-Box Network for Accurate Object Detection via Single Point Supervision

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13669))

Included in the following conference series:

Abstract

Object detection using single point supervision has received increasing attention over the years. However, the performance gap between point supervised object detection (PSOD) and bounding box supervised detection remains large. In this paper, we attribute such a large performance gap to the failure of generating high-quality proposal bags which are crucial for multiple instance learning (MIL). To address this problem, we introduce a lightweight alternative to the off-the-shelf proposal (OTSP) method and thereby create the Point-to-Box Network (P2BNet), which can construct an inter-objects balanced proposal bag by generating proposals in an anchor-like way. By fully investigating the accurate position information, P2BNet further constructs an instance-level bag, avoiding the mixture of multiple objects. Finally, a coarse-to-fine policy in a cascade fashion is utilized to improve the IoU between proposals and ground-truth (GT). Benefiting from these strategies, P2BNet is able to produce high-quality instance-level bags for object detection. P2BNet improves the mean average precision (AP) by more than 50% relative to the previous best PSOD method on the MS COCO dataset. It also demonstrates the great potential to bridge the performance gap between point supervised and bounding-box supervised detectors. The code will be released at www.github.com/ucas-vg/P2BNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbeláez, P.A., Pont-Tuset, J., et al.: Multiscale combinatorial grouping. In: CVPR (2014)

    Google Scholar 

  2. Bilen, H., Vedaldi, A.: Weakly supervised deep detection networks. In: CVPR (2016)

    Google Scholar 

  3. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25

    Chapter  Google Scholar 

  4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  5. Chen, K., Wang, J., Pang, J.E.: MMDetection: open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  6. Chen, Z., Fu, Z., et al.: SLV: spatial likelihood voting for weakly supervised object detection. In: CVPR (2020)

    Google Scholar 

  7. Cheng, B., Parkhi, O., Kirillov, A.: Pointly-supervised instance segmentation. CoRR (2021)

    Google Scholar 

  8. Diba, A., Sharma, V., et al.: Weakly supervised cascaded convolutional networks. In: CVPR (2017)

    Google Scholar 

  9. Ding, J., Xue, N., Long, Y., Xia, G., Lu, Q.: Learning RoI transformer for oriented object detection in aerial images. In: CVPR (2019)

    Google Scholar 

  10. Everingham, M., Gool, L.V., et al.: The pascal visual object classes (VOC) challenge. In: IJCV (2010)

    Google Scholar 

  11. Gao, M., Li, A., et al.: C-WSL: count-guided weakly supervised localization. In: ECCV (2018)

    Google Scholar 

  12. Ge, W., Yang, S., Yu, Y.: Multi-evidence filtering and fusion for multi-label classification, object detection and semantic segmentation based on weakly supervised learning. In: CVPR (2018)

    Google Scholar 

  13. Girshick, R.B.: Fast R-CNN. In: ICCV (2015)

    Google Scholar 

  14. Guo, Z., Liu, C., Zhang, X., Jiao, J., Ji, X., Ye, Q.: Beyond bounding-box: convex-hull feature adaptation for oriented and densely packed object detection. In: CVPR (2021)

    Google Scholar 

  15. He, K., Gkioxari, G., et al.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  16. He, K., Zhang, X., et al.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  17. Huang, Z., Zou, Y., et al.: Comprehensive attention self-distillation for weakly-supervised object detection. In: NeurIPS (2020)

    Google Scholar 

  18. Jia, Q., Wei, S., et al.: Gradingnet: towards providing reliable supervisions for weakly supervised object detection by grading the box candidates. In: AAAI (2021)

    Google Scholar 

  19. Jiang, N., et al.: Anti-UAV: a large multi-modal benchmark for UAV tracking. IEEE TMM (2021)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  21. Lee, P., Byun, H.: Learning action completeness from points for weakly-supervised temporal action localization. In: ICCV (2021)

    Google Scholar 

  22. Lin, T., Dollár, P., et al.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  23. Lin, T., Goyal, P., et al.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  24. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  25. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  26. Liu, Z., Lin, Y., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)

    Google Scholar 

  27. Meng, M., Zhang, T., Yang, W., Zhao, J., Zhang, Y., Wu, F.: Diverse complementary part mining for weakly supervised object localization. IEEE TIP 31, 1774–1788 (2022)

    Google Scholar 

  28. Papadopoulos, D.P., Uijlings, J.R.R., et al.: Training object class detectors with click supervision. In: CVPR (2017)

    Google Scholar 

  29. Redmon, J., Divvala, S.K., et al.: You only look once: unified, real-time object detection. In: CVPR (2016)

    Google Scholar 

  30. Ren, S., He, K., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE TPAMI 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  31. Ren, Z., Yu, Z., et al.: Instance-aware, context-focused, and memory-efficient weakly supervised object detection. In: CVPR (2020)

    Google Scholar 

  32. Ren, Z., Yu, Z., Yang, X., Liu, M.-Y., Schwing, A.G., Kautz, J.: UFO\(^2\): a unified framework towards omni-supervised object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 288–313. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_18

    Chapter  Google Scholar 

  33. Ribera, J., Guera, D., Chen, Y., Delp, E.J.: Locating objects without bounding boxes. In: CVPR (2019)

    Google Scholar 

  34. van de Sande, K.E.A., Uijlings, J.R.R., et al.: Segmentation as selective search for object recognition. In: ICCV (2011)

    Google Scholar 

  35. Shen, Y., Ji, R., Chen, Z., Wu, Y., Huang, F.: UWSOD: toward fully-supervised-level capacity weakly supervised object detection. In: NeurIPS (2020)

    Google Scholar 

  36. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  37. Song, Q., et al.: Rethinking counting and localization in crowds: a purely point-based framework. In: ICCV (2021)

    Google Scholar 

  38. Sun, P., Zhang, R., et al.: Sparse R-CNN: end-to-end object detection with learnable proposals. In: CVPR (2021)

    Google Scholar 

  39. Tang, P., et al.: Multiple instance detection network with online instance classifier refinement. In: CVPR (2017)

    Google Scholar 

  40. Tang, P., Wang, X., et al.: PCL: proposal cluster learning for weakly supervised object detection. IEEE TPAMI 42(1), 176–191 (2020)

    Article  Google Scholar 

  41. Wan, F., Wei, P., et al.: Min-entropy latent model for weakly supervised object detection. IEEE TPAMI 41(10), 2395–2409 (2019)

    Article  Google Scholar 

  42. Yan, G., Liu, B., et al.: C-MIDN: coupled multiple instance detection network with segmentation guidance for weakly supervised object detection. In: ICCV (2019)

    Google Scholar 

  43. Yang, X., Yan, J., Feng, Z., He, T.: R3Det: refined single-stage detector with feature refinement for rotating object. In: AAAI (2021)

    Google Scholar 

  44. Yang, Z., Liu, S., et al.: Reppoints: point set representation for object detection. In: ICCV (2019)

    Google Scholar 

  45. Yu, X., Chen, P., et al.: Object localization under single coarse point supervision. In: CVPR (2022)

    Google Scholar 

  46. Yu, X., Gong, Y., et al.: Scale match for tiny person detection. In: IEEE WACV (2020)

    Google Scholar 

  47. Zeng, Z., Liu, B., et al.: WSOD2: learning bottom-up and top-down objectness distillation for weakly-supervised object detection. In: ICCV (2019)

    Google Scholar 

  48. Zhang, D., Han, J., Cheng, G., Yang, M.: Weakly supervised object localization and detection: a survey. IEEE TPAMI 44(9), 5866–5885 (2021)

    Google Scholar 

  49. Zhang, X., Wei, Y., et al.: Adversarial complementary learning for weakly supervised object localization. In: CVPR (2018)

    Google Scholar 

  50. Zhao, J., et al.: The 2nd anti-UAV workshop & challenge: methods and results. In: ICCVW 2021 (2021)

    Google Scholar 

  51. Zhou, B., Khosla, A., et al.: Learning deep features for discriminative localization. In: CVPR (2016)

    Google Scholar 

  52. Zhu, X., Su, W., et al.: Deformable DETR: deformable transformers for end-to-end object detection. In: ICLR (2021)

    Google Scholar 

  53. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Youth Innovation Promotion Association CAS, the National Natural Science Foundation of China (NSFC) under Grant No. 61836012, 61771447 and 62006244, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDA27000000, and Young Elite Scientist Sponsorship Program of China Association for Science and Technology YESS20200140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenjun Han .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12742 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, P. et al. (2022). Point-to-Box Network for Accurate Object Detection via Single Point Supervision. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20077-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20076-2

  • Online ISBN: 978-3-031-20077-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics