Skip to main content

DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13669))

Included in the following conference series:

Abstract

Modern neural networks use building blocks such as convolutions that are equivariant to arbitrary \(2\)D translations. However, these vanilla blocks are not equivariant to arbitrary \(3\)D translations in the projective manifold. Even then, all monocular \(3\)D detectors use vanilla blocks to obtain the \(3\)D coordinates, a task for which the vanilla blocks are not designed for. This paper takes the first step towards convolutions equivariant to arbitrary \(3\)D translations in the projective manifold. Since the depth is the hardest to estimate for monocular detection, this paper proposes Depth EquiVarIAnt NeTwork (DEVIANT) built with existing scale equivariant steerable blocks. As a result, DEVIANT is equivariant to the depth translations in the projective manifold whereas vanilla networks are not. The additional depth equivariance forces the DEVIANT to learn consistent depth estimates, and therefore, DEVIANT achieves state-of-the-art monocular \(3\)D detection results on KITTI and Waymo datasets in the image-only category and performs competitively to methods using extra information. Moreover, DEVIANT works better than vanilla networks in cross-dataset evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The KITTI Vision Benchmark Suite. https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d. Accessed 03 July 2022

  2. Alhaija, H., Mustikovela, S., Mescheder, L., Geiger, A., Rother, C.: Augmented reality meets computer vision: efficient data generation for urban driving scenes. IJCV (2018)

    Google Scholar 

  3. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  4. Brazil, G., Liu, X.: M\(3\)D-RPN: monocular \(3\)D region proposal network for object detection. In: ICCV (2019)

    Google Scholar 

  5. Brazil, G., Pons-Moll, G., Liu, X., Schiele, B.: Kinematic \(3\)D object detection in monocular video. In: ECCV (2020)

    Google Scholar 

  6. Bronstein, M.: Convolution from first principles. htpps://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028. Accessed 13 Aug 2021

    Google Scholar 

  7. Bronstein, M., Bruna, J., Cohen, T., Veličković, P.: Geometric deep learning: gGrids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478 (2021)

  8. Burns, B., Weiss, R., Riseman, E.: The non-existence of general-case view-invariants. In: Geometric Invariance in Computer Vision (1992)

    Google Scholar 

  9. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: CVPR (2020)

    Google Scholar 

  10. Chabot, F., Chaouch, M., Rabarisoa, J., Teuliere, C., Chateau, T.: Deep MANTA: a coarse-to-fine many-task network for joint \(2\)D and \(3\)D vehicle analysis from monocular image. In: CVPR (2017)

    Google Scholar 

  11. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular \(3\)D object detection for autonomous driving. In: CVPR (2016)

    Google Scholar 

  12. Chen, X., Kundu, K., Zhu, Y., Berneshawi, A., Ma, H., Fidler, S., Urtasun, R.: \(3\)D object proposals for accurate object class detection. In: NeurIPS (2015)

    Google Scholar 

  13. Chen, Y., Tai, L., Sun, K., Li, M.: MonoPair: Monocular \(3\)D object detection using pairwise spatial relationships. In: CVPR (2020)

    Google Scholar 

  14. Chong, Z., et al.: MonoDistill: learning spatial features for monocular \(3\)D object detection. In: ICLR (2022)

    Google Scholar 

  15. Cohen, T., Geiger, M., Köhler, J., Welling, M.: Spherical CNNs. In: ICLR (2018)

    Google Scholar 

  16. Cohen, T., Welling, M.: Learning the irreducible representations of commutative lie groups. In: ICML (2014)

    Google Scholar 

  17. Cohen, T., Welling, M.: Group equivariant convolutional networks. In: ICML (2016)

    Google Scholar 

  18. Dieleman, S., De Fauw, J., Kavukcuoglu, K.: Exploiting cyclic symmetry in convolutional neural networks. In: ICML (2016)

    Google Scholar 

  19. Ding, M., Huo, Y., Yi, H., Wang, Z., Shi, J., Lu, Z., Luo, P.: Learning depth-guided convolutions for monocular \(3\)D object detection. In: CVPR Workshops (2020)

    Google Scholar 

  20. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  21. Esteves, C., Allen-Blanchette, C., Zhou, X., Daniilidis, K.: Polar transformer networks. In: ICLR (2018)

    Google Scholar 

  22. Fidler, S., Dickinson, S., Urtasun, R.: \(3\)D object detection and viewpoint estimation with a deformable \(3\)D cuboid model. In: NeurIPS (2012)

    Google Scholar 

  23. Freeman, W., Adelson, E.: The design and use of steerable filters. TPAMI (1991)

    Google Scholar 

  24. Gandikota, K., Geiping, J., Lähner, Z., Czapliński, A., Moeller, M.: Training or architecture? how to incorporate invariance in neural networks. arXiv preprint arXiv:2106.10044 (2021)

  25. Ganea, O.E., Bécigneul, G., Hofmann, T.: Hyperbolic neural networks. In: NeurIPS (2017)

    Google Scholar 

  26. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  27. Ghosh, R., Gupta, A.: Scale steerable filters for locally scale-invariant convolutional neural networks. In: ICML Workshops (2019)

    Google Scholar 

  28. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press (2003)

    Google Scholar 

  29. Henriques, J., Vedaldi, A.: Warped convolutions: Efficient invariance to spatial transformations. In: ICML (2017)

    Google Scholar 

  30. Jansson, Y., Lindeberg, T.: Scale-invariant scale-channel networks: deep networks that generalise to previously unseen scales. IJCV (2021)

    Google Scholar 

  31. Jing, L.: Physical symmetry enhanced neural networks. Ph.D. thesis, Massachusetts Institute of Technology (2020)

    Google Scholar 

  32. Kanazawa, A., Sharma, A., Jacobs, D.: Locally scale-invariant convolutional neural networks. In: NeurIPS Workshops (2014)

    Google Scholar 

  33. Kumar, A., Brazil, G., Liu, X.: GrooMeD-NMS: grouped mathematically differentiable NMS for monocular \(3\)D object detection. In: CVPR (2021)

    Google Scholar 

  34. Kumar, A., et al.: LUVLi face alignment: estimating landmarks’ location, uncertainty, and visibility likelihood. In: CVPR (2020)

    Google Scholar 

  35. Kumar, A., Prabhakaran, V.: Estimation of bandlimited signals from the signs of noisy samples. In: ICASSP (2013)

    Google Scholar 

  36. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE (1998)

    Google Scholar 

  37. Li, P., Zhao, H., Liu, P., Cao, F.: RTM3D: real-time monocular 3d detection from object keypoints for autonomous driving. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 644–660. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_38

    Chapter  Google Scholar 

  38. Lian, Q., Ye, B., Xu, R., Yao, W., Zhang, T.: Geometry-aware data augmentation for monocular \(3\)D object detection. arXiv preprint arXiv:2104.05858 (2021)

  39. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  40. Liu, L., Lu, J., Xu, C., Tian, Q., Zhou, J.: Deep fitting degree scoring network for monocular \(3\)D object detection. In: CVPR (2019)

    Google Scholar 

  41. Liu, X., Xue, N., Wu, T.: Learning auxiliary monocular contexts helps monocular \(3\)D object detection. In: AAAI (2022)

    Google Scholar 

  42. Liu, Y., Yixuan, Y., Liu, M.: Ground-aware monocular \(3\)D object detection for autonomous driving. Robotics and Automation Letters (2021)

    Google Scholar 

  43. Liu, Z., Zhou, D., Lu, F., Fang, J., Zhang, L.: AutoShape: real-time shape-aware monocular \(3\)D object detection. In: ICCV (2021)

    Google Scholar 

  44. Lu, Y., et al.: Geometry uncertainty projection network for monocular \(3\)D object detection. In: ICCV (2021)

    Google Scholar 

  45. Ma, X., Liu, S., Xia, Z., Zhang, H., Zeng, X., Ouyang, W.: Rethinking pseudo-LiDAR representation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 311–327. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_19

    Chapter  Google Scholar 

  46. Ma, X., Ouyang, W., Simonelli, A., Ricci, E.: \(3\)D object detection from images for autonomous driving: a survey. arXiv preprint arXiv:2202.02980 (2022)

  47. Ma, X., Wang, Z., Li, H., Zhang, P., Ouyang, W., Fan, X.: Accurate monocular \(3\)D object detection via color-embedded \(3\)D reconstruction for autonomous driving. In: ICCV (2019)

    Google Scholar 

  48. Ma, X., et al.: Delving into localization errors for monocular \(3\)D object detection. In: CVPR (2021)

    Google Scholar 

  49. Marcos, D., Kellenberger, B., Lobry, S., Tuia, D.: Scale equivariance in CNNs with vector fields. In: ICML Workshops (2018)

    Google Scholar 

  50. Marcos, D., Volpi, M., Komodakis, N., Tuia, D.: Rotation equivariant vector field networks. In: ICCV (2017)

    Google Scholar 

  51. Micheli, A.: Neural network for graphs: a contextual constructive approach. IEEE Trans. Neural Networks (2009)

    Google Scholar 

  52. Park, D., Ambrus, R., Guizilini, V., Li, J., Gaidon, A.: Is Pseudo-LiDAR needed for monocular \(3\)D object detection? In: ICCV (2021)

    Google Scholar 

  53. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  54. Payet, N., Todorovic, S.: From contours to \(3\)D object detection and pose estimation. In: ICCV (2011)

    Google Scholar 

  55. Pepik, B., Stark, M., Gehler, P., Schiele, B.: Multi-view and \(3\)D deformable part models. TPAMI (2015)

    Google Scholar 

  56. Rath, M., Condurache, A.: Boosting deep neural networks with geometrical prior knowledge: a survey. arXiv preprint arXiv:2006.16867 (2020)

  57. Reading, C., Harakeh, A., Chae, J., Waslander, S.: Categorical depth distribution network for monocular \(3\)D object detection. In: CVPR (2021)

    Google Scholar 

  58. Rematas, K., Kemelmacher-Shlizerman, I., Curless, B., Seitz, S.: Soccer on your tabletop. In: CVPR (2018)

    Google Scholar 

  59. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  60. Saxena, A., Driemeyer, J., Ng, A.: Robotic grasping of novel objects using vision. IJRR (2008)

    Google Scholar 

  61. Shi, S., Wang, X., Li, H.: PointRCNN: \(3\)D object proposal generation and detection from point cloud. In: CVPR (2019)

    Google Scholar 

  62. Shi, X., Ye, Q., Chen, X., Chen, C., Chen, Z., Kim, T.K.: Geometry-based distance decomposition for monocular \(3\)D object detection. In: ICCV (2021)

    Google Scholar 

  63. Simonelli, A., Bulò, S., Porzi, L., Antequera, M., Kontschieder, P.: Disentangling monocular \(3\)D object detection: from single to multi-class recognition. TPAMI (2020)

    Google Scholar 

  64. Simonelli, A., Bulò, S., Porzi, L., Kontschieder, P., Ricci, E.: Are we missing confidence in Pseudo-LiDAR methods for monocular \(3\)D object detection? In: ICCV (2021)

    Google Scholar 

  65. Simonelli, A., Bulò, S., Porzi, L., López-Antequera, M., Kontschieder, P.: Disentangling monocular \(3\)D object detection. In: ICCV (2019)

    Google Scholar 

  66. Simonelli, A., Bulò, S., Porzi, L., Ricci, E., Kontschieder, P.: Towards generalization across depth for monocular \(3\)D object detection. In: ECCV (2020)

    Google Scholar 

  67. Sosnovik, I., Moskalev, A., Smeulders, A.: DISCO: accurate discrete scale convolutions. In: BMVC (2021)

    Google Scholar 

  68. Sosnovik, I., Moskalev, A., Smeulders, A.: Scale equivariance improves siamese tracking. In: WACV (2021)

    Google Scholar 

  69. Sosnovik, I., Szmaja, M., Smeulders, A.: Scale-equivariant steerable networks. In: ICLR (2020)

    Google Scholar 

  70. Sun, P., et al.: Scalability in perception for autonomous driving: waymo open dataset. In: CVPR (2020)

    Google Scholar 

  71. Tang, Y., Dorn, S., Savani, C.: Center\(3\)D: center-based monocular \(3\)D object detection with joint depth understanding. arXiv preprint arXiv:2005.13423 (2020)

  72. Thayalan-Vaz, S., M, S., Santhakumar, K., Ravi Kiran, B., Gauthier, T., Yogamani, S.: Exploring \(2\)D data augmentation for \(3\)D monocular object detection. arXiv preprint arXiv:2104.10786 (2021)

  73. Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L., Kohlhoff, K., Riley, P.: Tensor field networks: rotation-and translation-equivariant neural networks for \(3\)D point clouds. arXiv preprint arXiv:1802.08219 (2018)

  74. Wang, L., Du, L., Ye, X., Fu, Y., Guo, G., Xue, X., Feng, J., Zhang, L.: Depth-conditioned dynamic message propagation for monocular \(3\)D object detection. In: CVPR (2021)

    Google Scholar 

  75. Wang, L., Zhang, L., Zhu, Y., Zhang, Z., He, T., Li, M., Xue, X.: Progressive coordinate transforms for monocular \(3\)D object detection. In: NeurIPS (2021)

    Google Scholar 

  76. Wang, R., Walters, R., Yu, R.: Incorporating symmetry into deep dynamics models for improved generalization. In: ICLR (2021)

    Google Scholar 

  77. Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.: Pseudo-LiDAR from visual depth estimation: bridging the gap in \(3\)D object detection for autonomous driving. In: CVPR (2019)

    Google Scholar 

  78. Wang, Y., Guizilini, V., Zhang, T., Wang, Y., Zhao, H., Solomon, J.: DETR3D: \(3\)D object detection from multi-view images via \(3\)D-to-\(2\)D queries. In: CoRL (2021)

    Google Scholar 

  79. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. TIP (2004)

    Google Scholar 

  80. Weiler, M., Forré, P., Verlinde, E., Welling, M.: Coordinate independent convolutional networks-isometry and gauge equivariant convolutions on riemannian manifolds. arXiv preprint arXiv:2106.06020 (2021)

  81. Weiler, M., Hamprecht, F., Storath, M.: Learning steerable filters for rotation equivariant CNNs. In: CVPR (2018)

    Google Scholar 

  82. Wilk, M.v.d., Bauer, M., John, S., Hensman, J.: Learning invariances using the marginal likelihood. In: NeurIPS (2018)

    Google Scholar 

  83. Worrall, D., Brostow, G.: CubeNet: equivariance to 3D rotation and translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 585–602. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_35

    Chapter  Google Scholar 

  84. Worrall, D., Garbin, S., Turmukhambetov, D., Brostow, G.: Harmonic networks: deep translation and rotation equivariance. In: CVPR (2017)

    Google Scholar 

  85. Worrall, D., Welling, M.: Deep scale-spaces: equivariance over scale. In: NeurIPS (2019)

    Google Scholar 

  86. Xu, Y., Xiao, T., Zhang, J., Yang, K., Zhang, Z.: Scale-invariant convolutional neural networks. arXiv preprint arXiv:1411.6369 (2014)

  87. Yang, G., Ramanan, D.: Upgrading optical flow to \(3\)D scene flow through optical expansion. In: CVPR (2020)

    Google Scholar 

  88. Yeh, R., Hu, Y.T., Schwing, A.: Chirality nets for human pose regression. NeurIPS (2019)

    Google Scholar 

  89. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2015)

    Google Scholar 

  90. Zhang, Y., Ma, X., Yi, S., Hou, J., Wang, Z., Ouyang, W., Xu, D.: Learning geometry-guided depth via projective modeling for monocular \(3\)D object detection. arXiv preprint arXiv:2107.13931 (2021)

  91. Zhang, Y., Lu, J., Zhou, J.: Objects are different: flexible monocular \(3\)D object detection. In: CVPR (2021)

    Google Scholar 

  92. Zhou, A., Knowles, T., Finn, C.: Meta-learning symmetries by reparameterization. In: ICLR (2021)

    Google Scholar 

  93. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  94. Zhou, Y., He, Y., Zhu, H., Wang, C., Li, H., Jiang, Q.: MonoEF: extrinsic parameter free monocular \(3\)D object detection. TPAMI (2021)

    Google Scholar 

  95. Zhu, W., Qiu, Q., Calderbank, R., Sapiro, G., Cheng, X.: Scale-equivariant neural networks with decomposed convolutional filters. arXiv preprint arXiv:1909.11193 (2019)

  96. Zou, Z., et al.: The devil is in the task: exploiting reciprocal appearance-localization features for monocular \(3\)D object detection. In: ICCV (2021)

    Google Scholar 

  97. Zwicke, P., Kiss, I.: A new implementation of the mellin transform and its application to radar classification of ships. TPAMI (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav Kumar .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 19755 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, A., Brazil, G., Corona, E., Parchami, A., Liu, X. (2022). DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20077-9_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20076-2

  • Online ISBN: 978-3-031-20077-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics