Abstract
We consider the problem of category-level 6D pose estimation from a single RGB image. Our approach represents an object category as a cuboid mesh and learns a generative model of the neural feature activations at each mesh vertex to perform pose estimation through differentiable rendering. A common problem of rendering-based approaches is that they rely on bounding box proposals, which do not convey information about the 3D rotation of the object and are not reliable when objects are partially occluded. Instead, we introduce a coarse-to-fine optimization strategy that utilizes the rendering process to estimate a sparse set of 6D object proposals, which are subsequently refined with gradient-based optimization. The key to enabling the convergence of our approach is a neural feature representation that is trained to be scale- and rotation-invariant using contrastive learning. Our experiments demonstrate an enhanced category-level 6D pose estimation performance compared to prior work, particularly under strong partial occlusion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bai, Y., Wang, A., Kortylewski, A., Yuille, A.: CoKe: localized contrastive learning for robust keypoint detection. arXiv preprint arXiv:2009.14115 (2020)
Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194. SIGGRAPH 1999, ACM Press/Addison-Wesley Publishing Co., USA (1999). https://doi.org/10.1145/311535.311556
Chen, X., Dong, Z., Song, J., Geiger, A., Hilliges, O.: Category level object pose estimation via neural analysis-by-synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 139–156. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_9
Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)
Egger, B., et al.: Occlusion-aware 3D morphable models and an illumination prior for face image analysis. Int. J. Comput. Vis. 126(12), 1269–1287 (2018)
Girshick, R., Felzenszwalb, P., McAllester, D.: Object detection with grammar models. In: Advances in Neural Information Processing Systems 24 (2011)
Grenander, U.: A unified approach to pattern analysis. In: Advances in computers, vol. 10, pp. 175–216. Elsevier (1970)
Grenander, U.: Elements of pattern theory. JHU Press, Baltimore (1996)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
He, Y., Sun, W., Huang, H., Liu, J., Fan, H., Sun, J.: PVN3D: a deep point-wise 3D keypoints voting network for 6DoF pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Huber, P.J.: Robust statistics, vol. 523. Wiley (2004)
Iwase, S., Liu, X., Khirodkar, R., Yokota, R., Kitani, K.M.: Repose: fast 6D object pose refinement via deep texture rendering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3303–3312 (2021)
Kortylewski, A., He, J., Liu, Q., Cosgrove, C., Yang, C., Yuille, A.L.: Compositional generative networks and robustness to perceptible image changes. In: 2021 55th Annual Conference on Information Sciences and Systems (CISS), pp. 1–8. IEEE (2021)
Kortylewski, A., He, J., Liu, Q., Yuille, A.L.: Compositional convolutional neural networks: a deep architecture with innate robustness to partial occlusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Kortylewski, A., Liu, Q., Wang, A., Sun, Y., Yuille, A.: Compositional convolutional neural networks: a robust and interpretable model for object recognition under occlusion. International Journal of Computer Vision, pp. 1–25 (2020)
Kortylewski, A., Liu, Q., Wang, H., Zhang, Z., Yuille, A.: Combining compositional models and deep networks for robust object classification under occlusion. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1333–1341 (2020)
LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. Handb. Brain Theor. Neural Netw. 3361(10), 1995 (1995)
Li, P., Zhao, H., Liu, P., Cao, F.: RTM3D: real-time monocular 3D detection from object keypoints for autonomous driving. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 644–660. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_38
Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: DeepIM: deep iterative matching for 6D pose estimation. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)
Lin, J., Wei, Z., Li, Z., Xu, S., Jia, K., Li, Y.: DualPoseNet: category-level 6D object pose and size estimation using dual pose network with refined learning of pose consistency. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3560–3569 (2021)
Moreno, P., Williams, C.K.I., Nash, C., Kohli, P.: Overcoming occlusion with inverse graphics. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 170–185. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_16
Pavlakos, G., Zhou, X., Chan, A., Derpanis, K.G., Daniilidis, K.: 6-DoF object pose from semantic keypoints. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2011–2018 (2017). https://doi.org/10.1109/ICRA.2017.7989233
Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: PVNet: pixel-wise voting network for 6DoF pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)
Romaszko, L., Williams, C.K., Moreno, P., Kohli, P.: Vision-as-inverse-graphics: obtaining a rich 3D explanation of a scene from a single image. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 851–859 (2017)
Schönborn, S., Egger, B., Morel-Forster, A., Vetter, T.: Markov Chain Monte Carlo for automated face image analysis. Int. J. Comput. Vis. 123(2), 160–183 (2017)
Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(04), 376–380 (1991)
Wang, A., Kortylewski, A., Yuille, A.: NEMO: Neural mesh models of contrastive features for robust 3D pose estimation. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=pmj131uIL9H
Wang, A., Mei, S., Yuille, A.L., Kortylewski, A.: Neural view synthesis and matching for semi-supervised few-shot learning of 3D pose. Adv. Neural. Inf. Process. Syst. 34, 7207–7219 (2021)
Wang, A., Sun, Y., Kortylewski, A., Yuille, A.L.: Robust object detection under occlusion with context-aware compositionalNets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12645–12654 (2020)
Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object coordinate space for category-level 6D object pose and size estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Xiang, Y., et al.: ObjectNet3D: a large scale database for 3D object recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 160–176. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_10
Xiang, Y., Mottaghi, R., Savarese, S.: Beyond pascal: a benchmark for 3D object detection in the wild. In: IEEE Winter Conference on Applications of Computer Vision, pp. 75–82. IEEE (2014)
Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6d object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199 (2017)
Xiao, M., Kortylewski, A., Wu, R., Qiao, S., Shen, W., Yuille, A.: TDMPNet: prototype network with recurrent top-down modulation for robust object classification under partial occlusion. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12536, pp. 447–463. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66096-3_31
Yuan, X., Kortylewski, A., Sun, Y., Yuille, A.: Robust instance segmentation through reasoning about multi-object occlusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11141–11150 (2021)
Zhou, X., Karpur, A., Luo, L., Huang, Q.: StarMap for category-agnostic keypoint and viewpoint estimation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 318–334 (2018)
Acknowledgements
AK acknowledges support via his Emmy Noether Research Group funded by the German Science Foundation (DFG) under Grant No. 468670075. AY acknowledges the Institute for Assured Autonomy at JHU with Grant IAA 80052272, ONR N00014-21-1-2812, NSF grant BCS-1827427.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ma, W., Wang, A., Yuille, A., Kortylewski, A. (2022). Robust Category-Level 6D Pose Estimation with Coarse-to-Fine Rendering of Neural Features. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-20077-9_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20076-2
Online ISBN: 978-3-031-20077-9
eBook Packages: Computer ScienceComputer Science (R0)