Skip to main content

Robust Category-Level 6D Pose Estimation with Coarse-to-Fine Rendering of Neural Features

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13669))

Included in the following conference series:

Abstract

We consider the problem of category-level 6D pose estimation from a single RGB image. Our approach represents an object category as a cuboid mesh and learns a generative model of the neural feature activations at each mesh vertex to perform pose estimation through differentiable rendering. A common problem of rendering-based approaches is that they rely on bounding box proposals, which do not convey information about the 3D rotation of the object and are not reliable when objects are partially occluded. Instead, we introduce a coarse-to-fine optimization strategy that utilizes the rendering process to estimate a sparse set of 6D object proposals, which are subsequently refined with gradient-based optimization. The key to enabling the convergence of our approach is a neural feature representation that is trained to be scale- and rotation-invariant using contrastive learning. Our experiments demonstrate an enhanced category-level 6D pose estimation performance compared to prior work, particularly under strong partial occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, Y., Wang, A., Kortylewski, A., Yuille, A.: CoKe: localized contrastive learning for robust keypoint detection. arXiv preprint arXiv:2009.14115 (2020)

  2. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194. SIGGRAPH 1999, ACM Press/Addison-Wesley Publishing Co., USA (1999). https://doi.org/10.1145/311535.311556

  3. Chen, X., Dong, Z., Song, J., Geiger, A., Hilliges, O.: Category level object pose estimation via neural analysis-by-synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 139–156. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_9

    Chapter  Google Scholar 

  4. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  5. Egger, B., et al.: Occlusion-aware 3D morphable models and an illumination prior for face image analysis. Int. J. Comput. Vis. 126(12), 1269–1287 (2018)

    Article  Google Scholar 

  6. Girshick, R., Felzenszwalb, P., McAllester, D.: Object detection with grammar models. In: Advances in Neural Information Processing Systems 24 (2011)

    Google Scholar 

  7. Grenander, U.: A unified approach to pattern analysis. In: Advances in computers, vol. 10, pp. 175–216. Elsevier (1970)

    Google Scholar 

  8. Grenander, U.: Elements of pattern theory. JHU Press, Baltimore (1996)

    Google Scholar 

  9. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  10. He, Y., Sun, W., Huang, H., Liu, J., Fan, H., Sun, J.: PVN3D: a deep point-wise 3D keypoints voting network for 6DoF pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  11. Huber, P.J.: Robust statistics, vol. 523. Wiley (2004)

    Google Scholar 

  12. Iwase, S., Liu, X., Khirodkar, R., Yokota, R., Kitani, K.M.: Repose: fast 6D object pose refinement via deep texture rendering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3303–3312 (2021)

    Google Scholar 

  13. Kortylewski, A., He, J., Liu, Q., Cosgrove, C., Yang, C., Yuille, A.L.: Compositional generative networks and robustness to perceptible image changes. In: 2021 55th Annual Conference on Information Sciences and Systems (CISS), pp. 1–8. IEEE (2021)

    Google Scholar 

  14. Kortylewski, A., He, J., Liu, Q., Yuille, A.L.: Compositional convolutional neural networks: a deep architecture with innate robustness to partial occlusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  15. Kortylewski, A., Liu, Q., Wang, A., Sun, Y., Yuille, A.: Compositional convolutional neural networks: a robust and interpretable model for object recognition under occlusion. International Journal of Computer Vision, pp. 1–25 (2020)

    Google Scholar 

  16. Kortylewski, A., Liu, Q., Wang, H., Zhang, Z., Yuille, A.: Combining compositional models and deep networks for robust object classification under occlusion. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1333–1341 (2020)

    Google Scholar 

  17. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. Handb. Brain Theor. Neural Netw. 3361(10), 1995 (1995)

    Google Scholar 

  18. Li, P., Zhao, H., Liu, P., Cao, F.: RTM3D: real-time monocular 3D detection from object keypoints for autonomous driving. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 644–660. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_38

    Chapter  Google Scholar 

  19. Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: DeepIM: deep iterative matching for 6D pose estimation. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  20. Lin, J., Wei, Z., Li, Z., Xu, S., Jia, K., Li, Y.: DualPoseNet: category-level 6D object pose and size estimation using dual pose network with refined learning of pose consistency. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3560–3569 (2021)

    Google Scholar 

  21. Moreno, P., Williams, C.K.I., Nash, C., Kohli, P.: Overcoming occlusion with inverse graphics. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 170–185. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_16

    Chapter  Google Scholar 

  22. Pavlakos, G., Zhou, X., Chan, A., Derpanis, K.G., Daniilidis, K.: 6-DoF object pose from semantic keypoints. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2011–2018 (2017). https://doi.org/10.1109/ICRA.2017.7989233

  23. Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: PVNet: pixel-wise voting network for 6DoF pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  24. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  25. Romaszko, L., Williams, C.K., Moreno, P., Kohli, P.: Vision-as-inverse-graphics: obtaining a rich 3D explanation of a scene from a single image. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 851–859 (2017)

    Google Scholar 

  26. Schönborn, S., Egger, B., Morel-Forster, A., Vetter, T.: Markov Chain Monte Carlo for automated face image analysis. Int. J. Comput. Vis. 123(2), 160–183 (2017)

    Article  MathSciNet  Google Scholar 

  27. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(04), 376–380 (1991)

    Article  Google Scholar 

  28. Wang, A., Kortylewski, A., Yuille, A.: NEMO: Neural mesh models of contrastive features for robust 3D pose estimation. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=pmj131uIL9H

  29. Wang, A., Mei, S., Yuille, A.L., Kortylewski, A.: Neural view synthesis and matching for semi-supervised few-shot learning of 3D pose. Adv. Neural. Inf. Process. Syst. 34, 7207–7219 (2021)

    Google Scholar 

  30. Wang, A., Sun, Y., Kortylewski, A., Yuille, A.L.: Robust object detection under occlusion with context-aware compositionalNets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12645–12654 (2020)

    Google Scholar 

  31. Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object coordinate space for category-level 6D object pose and size estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  32. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  33. Xiang, Y., et al.: ObjectNet3D: a large scale database for 3D object recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 160–176. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_10

    Chapter  Google Scholar 

  34. Xiang, Y., Mottaghi, R., Savarese, S.: Beyond pascal: a benchmark for 3D object detection in the wild. In: IEEE Winter Conference on Applications of Computer Vision, pp. 75–82. IEEE (2014)

    Google Scholar 

  35. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6d object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199 (2017)

  36. Xiao, M., Kortylewski, A., Wu, R., Qiao, S., Shen, W., Yuille, A.: TDMPNet: prototype network with recurrent top-down modulation for robust object classification under partial occlusion. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12536, pp. 447–463. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66096-3_31

    Chapter  Google Scholar 

  37. Yuan, X., Kortylewski, A., Sun, Y., Yuille, A.: Robust instance segmentation through reasoning about multi-object occlusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11141–11150 (2021)

    Google Scholar 

  38. Zhou, X., Karpur, A., Luo, L., Huang, Q.: StarMap for category-agnostic keypoint and viewpoint estimation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 318–334 (2018)

    Google Scholar 

Download references

Acknowledgements

AK acknowledges support via his Emmy Noether Research Group funded by the German Science Foundation (DFG) under Grant No. 468670075. AY acknowledges the Institute for Assured Autonomy at JHU with Grant IAA 80052272, ONR N00014-21-1-2812, NSF grant BCS-1827427.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wufei Ma .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 939 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, W., Wang, A., Yuille, A., Kortylewski, A. (2022). Robust Category-Level 6D Pose Estimation with Coarse-to-Fine Rendering of Neural Features. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20077-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20076-2

  • Online ISBN: 978-3-031-20077-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics