Skip to main content

Exploring Resolution and Degradation Clues as Self-supervised Signal for Low Quality Object Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13669))

Included in the following conference series:

Abstract

Image restoration algorithms such as super resolution (SR) are indispensable pre-processing modules for object detection in low quality images. Most of these algorithms assume the degradation is fixed and known a priori. However, in practical, either the real degradation or optimal up-sampling ratio rate is unknown or differs from assumption, leading to a deteriorating performance for both the pre-processing module and the consequent high-level task such as object detection. Here, we propose a novel self-supervised framework to detect objects in degraded low resolution images. We utilizes the downsampling degradation as a kind of transformation for self-supervised signals to explore the equivariant representation against various resolutions and other degradation conditions. The Auto Encoding Resolution in Self-supervision (AERIS) framework could further take the advantage of advanced SR architectures with an arbitrary resolution restoring decoder to reconstruct the original correspondence from the degraded input image. Both the representation learning and object detection are optimized jointly in an end-to-end training fashion. The generic AERIS framework could be implemented on various mainstream object detection architectures with different backbones. The extensive experiments show that our methods has achieved superior performance compared with existing methods when facing variant degradation situations. Code is available at this link https://github.com/cuiziteng/ECCV_AERIS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Chapter 5, Alice in Wonderland.

References

  1. Afifi, M., Brown, M.S.: What else can fool deep learning? addressing color constancy errors on deep neural network performance. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  2. Bai, Y., Zhang, Y., Ding, M., Ghanem, B.: Finding tiny faces in the wild with generative adversarial network. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21–30 (2018). https://doi.org/10.1109/CVPR.2018.00010

  3. Bell-Kligler, S., Shocher, A., Irani, M.: Blind super-resolution kernel estimation using an internal-gan. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/5fd0b37cd7dbbb00f97ba6ce92bf5add-Paper.pdf

  4. Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: Toward real-world single image super-resolution: A new benchmark and a new model. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  5. Chen, K., et al.: MMDetection: Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  6. Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with local implicit image function. arXiv preprint arXiv:2012.09161 (2020)

  7. Cohen, T.S., Welling, M.: Group equivariant convolutional networks. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning - vol. 48. pp. 2990–2999. ICML’16, JMLR.org (2016)

    Google Scholar 

  8. Cui, Z., Qi, G.J., Gu, L., You, S., Zhang, Z., Harada, T.: Multitask aet with orthogonal tangent regularity for dark object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2553–2562 (2021)

    Google Scholar 

  9. Dai, D., Wang, Y., Chen, Y., Van Gool, L.: Is image super-resolution helpful for other vision tasks? In: IEEE Winter Conference on Applications of Computer Vision (WACV) (2016)

    Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  11. Dong, C., Loy, C.C., He, K., et al.: Learning a deep convolutional network for image super-resolution. In: Computer Vision - ECCV 2014, pp. 184–199 (2014)

    Google Scholar 

  12. Efrat, N., Glasner, D., Apartsin, A., Nadler, B., Levin, A.: Accurate blur models vs. image priors in single image super-resolution. In: 2013 IEEE International Conference on Computer Vision, pp. 2832–2839 (2013). https://doi.org/10.1109/ICCV.2013.352

  13. Elad, M., Feuer, A.: Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Trans. Image Process. 6(12), 1646–1658 (1997). https://doi.org/10.1109/83.650118

    Article  Google Scholar 

  14. Everingham, M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010) https://doi.org/10.1007/s11263-009-0275-4

  15. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  16. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=S1v4N2l0-

  17. Girshick, R.: Fast r-cnn. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169

  18. Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  19. Haris, M., Shakhnarovich, G., Ukita, N.: Task-driven super resolution: object detection in low-resolution images. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) Neural Inform. Process., pp. 387–395. Springer International Publishing, Cham (2021)

    Chapter  Google Scholar 

  20. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). DOI: https://doi.org/10.1109/CVPR.2016.90

  22. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: Proceedings of the International Conference on Learning Representations (2019)

    Google Scholar 

  23. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861 (2017). https://arxiv.org/abs/1704.04861

  24. Hu, X., Mu, H., Zhang, X., Wang, Z., Tan, T., Sun, J.: Meta-sr: A magnification-arbitrary network for super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  25. Irie, K., McKinnon, A.E., Unsworth, K., Woodhead, I.M.: A technique for evaluation of ccd video-camera noise. IEEE Trans. Circuits Syst. Video Technol. 18(2), 280–284 (2008). https://doi.org/10.1109/TCSVT.2007.913972

    Article  Google Scholar 

  26. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: European Conference on Computer Vision (2016)

    Google Scholar 

  27. Kamann, C., Rother, C.: Benchmarking the robustness of semantic segmentation models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  28. Karaimer, H.C., Brown, M.S.: A software platform for manipulating the camera imaging pipeline. In: European Conference on Computer Vision (ECCV) (2016)

    Google Scholar 

  29. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646–1654 (2016). https://doi.org/10.1109/CVPR.2016.182

  30. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5835–5843 (2017). https://doi.org/10.1109/CVPR.2017.618

  31. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 105–114 (2017). https://doi.org/10.1109/CVPR.2017.19

  32. Li, K., et al.: Uniformer: Unifying convolution and self-attention for visual recognition (2022)

    Google Scholar 

  33. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: Image restoration using swin transformer. In: IEEE International Conference on Computer Vision Workshops (2021)

    Google Scholar 

  34. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1132–1140 (2017). https://doi.org/10.1109/CVPRW.2017.151

  35. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  36. Liu, C., Sun, D.: On bayesian adaptive video super resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 346–360 (2014). https://doi.org/10.1109/TPAMI.2013.127

    Article  Google Scholar 

  37. Liu, C., Sun, D.: On bayesian adaptive video super resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 346–360 (2014). https://doi.org/10.1109/TPAMI.2013.127

    Article  Google Scholar 

  38. Liu, D., Wen, B., Liu, X., Wang, Z., Huang, T.S.: When image denoising meets high-level vision tasks: A deep learning approach. In: IJCAI (2018)

    Google Scholar 

  39. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  40. Luo, F., Wu, X., Guo, Y.: Functional neural networks for parametric image restoration problems. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (2021). https://openreview.net/forum?id=MMZ4djXrwbu

  41. Ma, X., Wang, Z., Zhan, Y., Zheng, Y., Wang, Z., Dai, D., Lin, C.W.: Both style and fog matter: Cumulative domain adaptation for semantic foggy scene understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18922–18931 (June 2022)

    Google Scholar 

  42. Mao, M., Peng, G., Zhang, R., Zheng, H., Ma, T., Peng, Y., Ding, E., Zhang, B., Han, S.: Dual-stream network for visual recognition. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (2021). https://openreview.net/forum?id=AjfD1JjeVKN

  43. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

  44. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. pp. 3859–3869. NIPS’17, Curran Associates Inc., Red Hook, NY, USA (2017)

    Google Scholar 

  45. Sayed, M., Brostow, G.: Improved handling of motion blur in online object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1706–1716 (2021)

    Google Scholar 

  46. Shermeyer, J., Van Etten, A.: The effects of super-resolution on object detection performance in satellite imagery. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2019)

    Google Scholar 

  47. Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1874–1883 (2016). https://doi.org/10.1109/CVPR.2016.207

  48. Singh, B., Davis, L.S.: An analysis of scale invariance in object detection snip. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  49. Singh, B., Najibi, M., Davis, L.S.: Sniper: Efficient multi-scale training. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 31. Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper/2018/file/166cee72e93a992007a89b39eb29628b-Paper.pdf

  50. Talebi, H., Milanfar, P.: Learning to resize images for computer vision tasks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 497–506 (October 2021)

    Google Scholar 

  51. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4809–4817 (2017). https://doi.org/10.1109/ICCV.2017.514

  52. Vasiljevic, I., Chakrabarti, A., Shakhnarovich, G.: Examining the impact of blur on recognition by convolutional networks (2017)

    Google Scholar 

  53. Wang, L., Li, D., Zhu, Y., Tian, L., Shan, Y.: Dual super-resolution learning for semantic segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3773–3782 (2020). https://doi.org/10.1109/CVPR42600.2020.00383

  54. Wang, L., Wang, Y., Dong, X., Xu, Q., Yang, J., An, W., Guo, Y.: Unsupervised degradation representation learning for blind super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10581–10590 (2021)

    Google Scholar 

  55. Wang, Z., Chang, S., Yang, Y., Liu, D., Huang, T.S.: Studying very low resolution recognition using deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  56. Wei, K., Fu, Y., Yang, J., Huang, H.: A physics-based noise formation model for extreme low-light raw denoising. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  57. Yang, W., Yuan, Y., Ren, W., et al.: Advancing image understanding in poor visibility environments: a collective benchmark study. IEEE Trans. Image Process. 29, 5737–5752 (2020). https://doi.org/10.1109/TIP.2020.2981922

    Article  MATH  Google Scholar 

  58. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: Efficient transformer for high-resolution image restoration. In: CVPR (2022)

    Google Scholar 

  59. Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  60. Zhang, K., Van Gool, L., Timofte, R.: Deep unfolding network for image super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3217–3226 (2020)

    Google Scholar 

  61. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep cnn denoiser prior for image restoration. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3929–3938 (2017)

    Google Scholar 

  62. Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3262–3271 (2018)

    Google Scholar 

  63. Zhang, L., Qi, G.J., Wang, L., Luo, J.: Aet vs. aed: Unsupervised representation learning by auto-encoding transformations rather than data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2547–2555 (2019)

    Google Scholar 

  64. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. CoRR abs/1904.07850 (2019), https://arxiv.org/abs/1904.07850

  65. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: 2011 International Conference on Computer Vision, pp. 479–486 (2011). https://doi.org/10.1109/ICCV.2011.6126278

  66. Zou, W.W.W., Yuen, P.C.: Very low resolution face recognition problem. IEEE Trans. Image Process. 21(1), 327–340 (2012). https://doi.org/10.1109/TIP.2011.2162423

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by JST Moonshot R &D Grant Number JPMJMS2011 and JST ACT-X Grant Number JPMJAX190D, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Gu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 172 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, Z. et al. (2022). Exploring Resolution and Degradation Clues as Self-supervised Signal for Low Quality Object Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20077-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20076-2

  • Online ISBN: 978-3-031-20077-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics