Skip to main content

DCL-Net: Deep Correspondence Learning Network for 6D Pose Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Establishment of point correspondence between camera and object coordinate systems is a promising way to solve 6D object poses. However, surrogate objectives of correspondence learning in 3D space are a step away from the true ones of object pose estimation, making the learning suboptimal for the end task. In this paper, we address this shortcoming by introducing a new method of Deep Correspondence Learning Network for direct 6D object pose estimation, shortened as DCL-Net. Specifically, DCL-Net employs dual newly proposed Feature Disengagement and Alignment (FDA) modules to establish, in the feature space, partial-to-partial correspondence and complete-to-complete one for partial object observation and its complete CAD model, respectively, which result in aggregated pose and match feature pairs from two coordinate systems; these two FDA modules thus bring complementary advantages. The match feature pairs are used to learn confidence scores for measuring the qualities of deep correspondence, while the pose feature pairs are weighted by confidence scores for direct object pose regression. A confidence-based pose refinement network is also proposed to further improve pose precision in an iterative manner. Extensive experiments show that DCL-Net outperforms existing methods on three benchmarking datasets, including YCB-Video, LineMOD, and Oclussion-LineMOD; ablation studies also confirm the efficacy of our novel designs. Our code is released publicly at https://github.com/Gorilla-Lab-SCUT/DCL-Net.

H. Li and J. Lin—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 5, 698–700 (1987)

    Article  Google Scholar 

  2. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. International Society for Optics and Photonics (1992)

    Google Scholar 

  3. Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., Rother, C.: Learning 6D object pose estimation using 3D object coordinates. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 536–551. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_35

    Chapter  Google Scholar 

  4. Calli, B., Singh, A., Walsman, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: The YCB object and model set: towards common benchmarks for manipulation research. In: 2015 International Conference on Advanced Robotics (ICAR), pp. 510–517. IEEE (2015)

    Google Scholar 

  5. Chen, W., Jia, X., Chang, H.J., Duan, J., Leonardis, A.: G2L-Net: global to local network for real-time 6D pose estimation with embedding vector features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4233–4242 (2020)

    Google Scholar 

  6. Chen, W., Jia, X., Chang, H.J., Duan, J., Shen, L., Leonardis, A.: FS-Net: fast shape-based network for category-level 6d object pose estimation with decoupled rotation mechanism. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1581–1590 (2021)

    Google Scholar 

  7. Collet, A., Martinez, M., Srinivasa, S.S.: The moped framework: object recognition and pose estimation for manipulation. Int. J. Rob. Res. 30(10), 1284–1306 (2011)

    Article  Google Scholar 

  8. Deng, S., Liang, Z., Sun, L., Jia, K.: VISTA: boosting 3D object detection via dual cross-view spatial attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8448–8457 (2022)

    Google Scholar 

  9. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  10. Graham, B., Engelcke, M., Van Der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9224–9232 (2018)

    Google Scholar 

  11. Gu, C., Ren, X.: Discriminative mixture-of-templates for viewpoint classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 408–421. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_30

    Chapter  Google Scholar 

  12. He, C., Zeng, H., Huang, J., Hua, X.S., Zhang, L.: Structure aware single-stage 3D object detection from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11873–11882 (2020)

    Google Scholar 

  13. He, Y., Huang, H., Fan, H., Chen, Q., Sun, J.: FFB6D: a full flow bidirectional fusion network for 6D pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3003–3013 (2021)

    Google Scholar 

  14. He, Y., Sun, W., Huang, H., Liu, J., Fan, H., Sun, J.: PVN3D: a deep point-wise 3D keypoints voting network for 6dof pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11632–11641 (2020)

    Google Scholar 

  15. Hinterstoisser, S., et al.: Gradient response maps for real-time detection of textureless objects. IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 876–888 (2011)

    Article  Google Scholar 

  16. Hinterstoisser, S., et al.: Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes. In: 2011 International Conference on Computer Vision, pp. 858–865. IEEE (2011)

    Google Scholar 

  17. Hu, Y., Fua, P., Wang, W., Salzmann, M.: Single-stage 6D object pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2930–2939 (2020)

    Google Scholar 

  18. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993)

    Article  Google Scholar 

  19. Kehl, W., Manhardt, F., Tombari, F., Ilic, S., Navab, N.: SSD-6D: making RGB-based 3D detection and 6D pose estimation great again. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1521–1529 (2017)

    Google Scholar 

  20. Kehl, W., Milletari, F., Tombari, F., Ilic, S., Navab, N.: Deep learning of local RGB-D patches for 3D object detection and 6D pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 205–220. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_13

    Chapter  Google Scholar 

  21. Levinson, J., et al.: Towards fully autonomous driving: systems and algorithms. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 163–168. IEEE (2011)

    Google Scholar 

  22. Li, C., Bai, J., Hager, G.D.: A unified framework for multi-view multi-class object pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 263–281. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_16

    Chapter  Google Scholar 

  23. Liebelt, J., Schmid, C., Schertler, K.: Independent object class detection using 3D feature maps. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  24. Lin, J., Li, H., Chen, K., Lu, J., Jia, K.: Sparse steerable convolutions: an efficient learning of SE(3)-equivariant features for estimation and tracking of object poses in 3D space. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  25. Lin, J., Wei, Z., Ding, C., Jia, K.: Category-level 6D object pose and size estimation using self-supervised deep prior deformation networks. arXiv preprint arXiv:2207.05444 (2022)

  26. Lin, J., Wei, Z., Li, Z., Xu, S., Jia, K., Li, Y.: DualPoseNet: category-level 6d object pose and size estimation using dual pose network with refined learning of pose consistency. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3560–3569 (2021)

    Google Scholar 

  27. Marchand, E., Uchiyama, H., Spindler, F.: Pose estimation for augmented reality: a hands-on survey. IEEE Trans. Visual Comput. Graphics 22(12), 2633–2651 (2015)

    Article  Google Scholar 

  28. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  29. Oberweger, M., Rad, M., Lepetit, V.: Making deep heatmaps robust to partial occlusions for 3D object pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 125–141. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_8

    Chapter  Google Scholar 

  30. Park, K., Patten, T., Vincze, M.: Pix2Pose: pixel-wise coordinate regression of objects for 6D pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7668–7677 (2019)

    Google Scholar 

  31. Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: PVNet: pixel-wise voting network for 6DoF pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4561–4570 (2019)

    Google Scholar 

  32. Rios-Cabrera, R., Tuytelaars, T.: Discriminatively trained templates for 3D object detection: a real time scalable approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2048–2055 (2013)

    Google Scholar 

  33. Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3D object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. Int. J. Comput. Vision 66(3), 231–259 (2006)

    Article  MATH  Google Scholar 

  34. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  35. Song, C., Song, J., Huang, Q.: HybridPose: 6D object pose estimation under hybrid representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 431–440 (2020)

    Google Scholar 

  36. Sundermeyer, M., Marton, Z.-C., Durner, M., Brucker, M., Triebel, R.: Implicit 3D orientation learning for 6D object detection from RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 712–729. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_43

    Chapter  Google Scholar 

  37. Tejani, A., Tang, D., Kouskouridas, R., Kim, T.-K.: Latent-class Hough forests for 3D object detection and pose estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 462–477. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_30

    Chapter  Google Scholar 

  38. Tian, M., Ang, M.H., Lee, G.H.: Shape prior deformation for categorical 6D object pose and size estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 530–546. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_32

    Chapter  Google Scholar 

  39. Wang, C., et al.: DenseFusion: 6D object pose estimation by iterative dense fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3343–3352 (2019)

    Google Scholar 

  40. Wang, G., Manhardt, F., Tombari, F., Ji, X.: GDR-Net: geometry-guided direct regression network for monocular 6d object pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16611–16621 (2021)

    Google Scholar 

  41. Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object coordinate space for category-level 6D object pose and size estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2642–2651 (2019)

    Google Scholar 

  42. Wang, Z., Jia, K.: Frustum ConvNet: sliding frustums to aggregate local point-wise features for amodal 3d object detection. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1742–1749. IEEE (2019)

    Google Scholar 

  43. Wohlhart, P., Lepetit, V.: Learning descriptors for object recognition and 3D pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3109–3118 (2015)

    Google Scholar 

  44. Wu, C., et al.: Grasp proposal networks: an end-to-end solution for visual learning of robotic grasps. Adv. Neural. Inf. Process. Syst. 33, 13174–13184 (2020)

    Google Scholar 

  45. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199 (2017)

  46. Xu, D., Anguelov, D., Jain, A.: PointFusion: deep sensor fusion for 3D bounding box estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 244–253 (2018)

    Google Scholar 

  47. Zhou, G., Wang, H., Chen, J., Huang, D.: PR-GCN: a deep graph convolutional network with point refinement for 6d pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2793–2802 (2021)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by Guangdong R &D key project of China (No.: 2019B010155001), and the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (No.: 2017ZT07X183). We also thank Yi Li and Xun Xu for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Jia .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 708 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Lin, J., Jia, K. (2022). DCL-Net: Deep Correspondence Learning Network for 6D Pose Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20077-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20076-2

  • Online ISBN: 978-3-031-20077-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics