Skip to main content

HEAD: HEtero-Assists Distillation for Heterogeneous Object Detectors

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13669))

Included in the following conference series:

Abstract

Conventional knowledge distillation (KD) methods for object detection mainly concentrate on homogeneous teacher-student detectors. However, the design of a lightweight detector for deployment is often significantly different from a high-capacity detector. Thus, we investigate KD among heterogeneous teacher-student pairs for a wide application. We observe that the core difficulty for heterogeneous KD (hetero-KD) is the significant semantic gap between the backbone features of heterogeneous detectors due to the different optimization manners. Conventional homogeneous KD (homo-KD) methods suffer from such a gap and are hard to directly obtain satisfactory performance for hetero-KD. In this paper, we propose the HEtero-Assists Distillation (HEAD) framework, leveraging heterogeneous detection heads as assistants to guide the optimization of the student detector to reduce this gap. In HEAD, the assistant is an additional detection head with the architecture homogeneous to the teacher head attached to the student backbone. Thus, a hetero-KD is transformed into a homo-KD, allowing efficient knowledge transfer from the teacher to the student. Moreover, we extend HEAD into a Teacher-Free HEAD (TF-HEAD) framework when a well-trained teacher detector is unavailable. Our method has achieved significant improvement compared to current detection KD methods. For example, on the MS-COCO dataset, TF-HEAD helps R18 RetinaNet achieve 33.9 mAP (\(+2.2\)), while HEAD further pushes the limit to 36.2 mAP (\(+4.5\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn, S., Hu, S.X., Damianou, A., Lawrence, N.D., Dai, Z.: Variational information distillation for knowledge transfer. In: CVPR, pp. 9155–9163 (2019)

    Google Scholar 

  2. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: CVPR, pp. 6154–6162 (2018)

    Google Scholar 

  3. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. In: NeurIPS, pp. 743–752 (2017)

    Google Scholar 

  4. Chen, Q., Wang, Y., Yang, T., Zhang, X., Cheng, J., Sun, J.: You Only Look One-level Feature. In: CVPR, pp. 13034–13043 (2021)

    Google Scholar 

  5. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: NeurIPS, pp. 379–387 (2016)

    Google Scholar 

  6. Dai, X., et al.: General instance distillation for object detection. In: CVPR, pp. 7838–7847 (2021)

    Google Scholar 

  7. Dong, Z., Li, G., Liao, Y., Wang, F., Ren, P., Qian, C.: CentripetalNet: pursuing high-quality keypoint pairs for object detection. In: CVPR, pp. 10516–10525 (2020)

    Google Scholar 

  8. Du, S., et al.: Agree to disagree: adaptive ensemble knowledge distillation in gradient space. In: NeurIPS, pp. 1–11 (2020)

    Google Scholar 

  9. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: ICCV, pp. 6568–6577 (2019)

    Google Scholar 

  10. Girshick, R.: Fast R-CNN. In: ICCV, pp. 1440–1448 (2015)

    Google Scholar 

  11. Guo, J., et al.: Distilling object detectors via decoupled features. In: CVPR, pp. 2154–2164 (2021)

    Google Scholar 

  12. Hao, M., Liu, Y., Zhang, X., Sun, J.: LabelEnc: a new intermediate supervision method for object detection. In: ECCV, pp. 529–545 (2020)

    Google Scholar 

  13. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. TPAMI 42(2), 386–397 (2020)

    Article  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: ECCV, pp. 346–361 (2014)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  16. Heo, B., Lee, M., Yun, S., Choi, J.Y.: Knowledge transfer via distillation of activation boundaries formed by hidden neurons. AAAI 33(1), 3779–3787 (2019)

    Article  Google Scholar 

  17. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NeurIPS (2014)

    Google Scholar 

  18. Hoiem, D., Chodpathumwan, Y., Dai, Q.: Diagnosing error in object detectors. In: ECCV, pp. 340–353 (2012)

    Google Scholar 

  19. Huang, Z., Wang, N.: Like what you like: knowledge distill via neuron selectivity transfer. arXiv preprint arXiv:1707.01219 (2017)

  20. Jafari, A., Rezagholizadeh, M., Sharma, P., Ghodsi, A.: Annealing knowledge distillation. In: EACL, pp. 2493–2504 (2021)

    Google Scholar 

  21. Ji, M., Shin, S., Hwang, S., Park, G., Moon, I.C.: Refine myself by teaching myself: feature refinement via self-knowledge distillation. In: CVPR, pp. 10659–10668 (2021)

    Google Scholar 

  22. Kim, J., Park, S., Kwak, N.: Paraphrasing complex network: network compression via factor transfer. In: NeurIPS, pp. 2760–2769 (2018)

    Google Scholar 

  23. Kim, K., Ji, B., Yoon, D., Hwang, S.: Self-Knowledge distillation with progressive refinement of targets. In: ICCV, pp. 6567–6576 (2021)

    Google Scholar 

  24. Lan, X., Zhu, X., Gong, S.: Knowledge distillation by on-the-fly native ensemble. In: NeurIPS, pp. 7517–7527 (2018)

    Google Scholar 

  25. Li, Q., Jin, S., Yan, J.: Mimicking very efficient network for object detection. In: CVPR, pp. 7341–7349 (2017)

    Google Scholar 

  26. Li, X., Wu, J., Fang, H., Liao, Y., Wang, F., Qian, C.: Local correlation consistency for knowledge distillation. In: ECCV, pp. 18–33 (2020)

    Google Scholar 

  27. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 936–944 (2017)

    Google Scholar 

  28. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. TPAMI 42(2), 318–327 (2020)

    Article  Google Scholar 

  29. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: ECCV, pp. 740–755 (2014)

    Google Scholar 

  30. Liu, W., et al.: SSD: single shot multibox detector. In: ECCV, pp. 21–37 (2016)

    Google Scholar 

  31. Lu, X., Li, Q., Li, B., Yan, J.: MimicDet: bridging the gap between one-stage and two-stage object detection. In: ECCV, pp. 541–557 (2020)

    Google Scholar 

  32. Mirzadeh, S.I., Farajtabar, M., Li, A., Levine, N., Matsukawa, A., Ghasemzadeh, H.: Improved knowledge distillation via teacher assistant. AAAI 34(04), 5191–5198 (2020)

    Article  Google Scholar 

  33. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: CVPR, pp. 3962–3971 (2019)

    Google Scholar 

  34. Passalis, N., Tefas, A.: Probabilistic knowledge transfer for deep representation learning. arXiv preprint arXiv:1803.10837 (2018)

  35. Passalis, N., Tzelepi, M., Tefas, A.: Heterogeneous knowledge distillation using information flow modeling. In: CVPR, pp. 2336–2345 (2020)

    Google Scholar 

  36. Peng, B., et al.: Correlation congruence for knowledge distillation. In: CVPR, pp. 5006–5015 (2019)

    Google Scholar 

  37. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788 (2015)

    Google Scholar 

  38. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. TPAMI 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  39. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets: hints for thin deep nets. In: ICLR, pp. 1–13 (2015)

    Google Scholar 

  40. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: CVPR, pp. 4510–4520 (2018)

    Google Scholar 

  41. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: CVPR, pp. 9626–9635 (2019)

    Google Scholar 

  42. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: CVPR, pp. 1365–1374 (2019)

    Google Scholar 

  43. Wang, T., Yuan, L., Zhang, X., Feng, J.: Distilling object detectors with fine-grained feature imitation. In: CVPR, pp. 4928–4937 (2019)

    Google Scholar 

  44. Wu, Y., et al.: Rethinking classification and localization for object detection. In: CVPR, pp. 10183–10192 (2020)

    Google Scholar 

  45. Yang, C., An, Z., Cai, L., Xu, Y.: Hierarchical self-supervised augmented knowledge distillation. In: IJCAI, pp. 1217–1223 (2021)

    Google Scholar 

  46. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: RepPoints: point set representation for object detection. In: ICCV, pp. 9656–9665 (2019)

    Google Scholar 

  47. Yang, Z., et al.: Focal and global knowledge distillation for detectors. In: CVPR (2022)

    Google Scholar 

  48. Yao, L., Pi, R., Xu, H., Zhang, W., Li, Z., Zhang, T.: G-DetKD: towards general distillation framework for object detectors via contrastive and semantic-guided feature imitation. In: ICCV (2021)

    Google Scholar 

  49. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: CVPR, pp. 7130–7138 (2017)

    Google Scholar 

  50. Yuan, L., Tay, F.E., Li, G., Wang, T., Feng, J.: Revisiting knowledge distillation via label smoothing regularization. In: CVPR, pp. 3902–3910 (2020)

    Google Scholar 

  51. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR, pp. 1–13 (2017)

    Google Scholar 

  52. Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., Ma, K.: Be Your own teacher: improve the performance of convolutional neural networks via self distillation. In: ICCV, pp. 3712–3721 (2019)

    Google Scholar 

  53. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: CVPR, pp. 4320–4328 (2018)

    Google Scholar 

  54. Zhou, C., Neubig, G., Gu, J.: Improve object detection with feature-based knowledge distillation: towards accurate and efficient detectors. In: ICLR (2021)

    Google Scholar 

  55. Zhou, X., Koltun, V., Krähenbühl, P.: Probabilistic two-stage detection. arXiv preprint arXiv:2103.07461 (2021)

  56. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

Download references

Acknowledgement

This work was partly supported by the National Natural Science Foundation of China (62122010, 61876177), the Fundamental Research Funds for the Central Universities, and the Key Research and Development Program of Zhejiang Province (2022C01082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Liao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 432 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L. et al. (2022). HEAD: HEtero-Assists Distillation for Heterogeneous Object Detectors. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20077-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20076-2

  • Online ISBN: 978-3-031-20077-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics