Skip to main content

Exploring Plain Vision Transformer Backbones for Object Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13669))

Included in the following conference series:

Abstract

We explore the plain, non-hierarchical Vision Transformer (ViT) as a backbone network for object detection. This design enables the original ViT architecture to be fine-tuned for object detection without needing to redesign a hierarchical backbone for pre-training. With minimal adaptations for fine-tuning, our plain-backbone detector can achieve competitive results. Surprisingly, we observe: (i) it is sufficient to build a simple feature pyramid from a single-scale feature map (without the common FPN design) and (ii) it is sufficient to use window attention (without shifting) aided with very few cross-window propagation blocks. With plain ViT backbones pre-trained as Masked Autoencoders (MAE), our detector, named ViTDet, can compete with the previous leading methods that were all based on hierarchical backbones, reaching up to 61.3 AP\(^\text {box}\) on the COCO dataset using only ImageNet-1K pre-training. We hope our study will draw attention to research on plain-backbone detectors. Code for ViTDet is available (https://github.com/facebookresearch/detectron2/tree/main/projects/ViTDet).

R. Girshick and K. He—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this paper, “backbone” refers to architectural components that can be inherited from pre-training and “plain” refers to the non-hierarchical, single-scale property.

  2. 2.

    This work is an extension of a preliminary version [32] that was unpublished and not submitted for peer review.

  3. 3.

    With a patch size of 16 \(\times \) 16 and 3 colors, a hidden dimension \(\ge \)768 (ViT-B and larger) can preserve all information of a patch if necessary.

  4. 4.

    From a broader perspective, the spirit of FPN [34] is “to build a feature pyramid inside a network”. Our simple feature pyramid follows this spirit. In the context of this paper, the term of “FPN” refers to the specific architecture design in [34].

  5. 5.

    We set the window size as the pre-training feature map size by default (14 \(\times \) 14 [12]).

  6. 6.

    Changing the stride affects the scale distribution and presents a different accuracy shift for objects of different scales. This topic is beyond the scope of this study. For simplicity, we use the same patch size of 16 for all of ViT-B, L, H (see the appendix).

  7. 7.

    Even our baseline with no propagation in the backbone is reasonably good (52.9 AP). This can be explained by the fact that the layers beyond the backbone (the simple feature pyramid, RPN, and RoI heads) also induce cross-window communication.

  8. 8.

    For example, Swin-B (IN-1K, Cascade Mask R-CNN) has 51.9 AP\(^\text {box}\) reported in the official repo. This result in our implementation is 52.7.

References

  1. Bao, H., Dong, L., Wei, F.: BEiT: BERT pre-training of image Transformers. arXiv:2106.08254 (2021)

  2. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS - improving object detection with one line of code. In: ICCV (2017)

    Google Scholar 

  3. Cai, Z., Vasconcelos, N.: Cascade R-CNN: high quality object detection and instance segmentation. TPAMI 43(5), 1483–1498 (2019)

    Article  Google Scholar 

  4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  5. Chen, K., et al.: Hybrid task cascade for instance segmentation. In: CVPR (2019)

    Google Scholar 

  6. Chen, Q., Wang, Y., Yang, T., Zhang, X., Cheng, J., Sun, J.: You only look one-level feature. In: CVPR (2021)

    Google Scholar 

  7. Chen, T., Xu, B., Zhang, C., Guestrin, C.: Training deep nets with sublinear memory cost. arXiv:1604.06174 (2016)

  8. Chen, W., et al.: A simple single-scale vision transformer for object localization and instance segmentation. arXiv:2112.09747 (2021)

  9. Dai, X., et al.: Dynamic head: unifying object detection heads with attentions. In: CVPR (2021)

    Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional Transformers for language understanding. In: NAACL (2019)

    Google Scholar 

  12. Dosovitskiy, A., et al.: An image is worth 16 x 16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  13. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: ICCV (2019)

    Google Scholar 

  14. El-Nouby, A., et al.: XCiT: cross-covariance image transformers. In: NeurIPS (2021)

    Google Scholar 

  15. Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J., Feichtenhofer, C.: Multiscale Vision Transformers. In: ICCV (2021)

    Google Scholar 

  16. Fu, W., Nie, C., Sun, T., Liu, J., Zhang, T., Liu, Y.: LVIS challenge track technical report 1st place solution: distribution balanced and boundary refinement for large vocabulary instance segmentation. arXiv:2111.02668 (2021)

  17. Ghiasi, G., et al.: Simple copy-paste is a strong data augmentation method for instance segmentation. In: CVPR (2021)

    Google Scholar 

  18. Girshick, R.: Fast R-CNN. In: ICCV (2015)

    Google Scholar 

  19. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  20. Goyal, P., et al.: Accurate, large minibatch SGD: training imagenet in 1 hour. arXiv:1706.02677 (2017)

  21. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: CVPR (2019)

    Google Scholar 

  22. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. arXiv:2111.06377 (2021)

  23. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  24. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: ECCV (2014)

    Google Scholar 

  25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  26. Heo, B., Yun, S., Han, D., Chun, S., Choe, J., Oh, S.J.: Rethinking spatial dimensions of vision transformers. In: ICCV (2021)

    Google Scholar 

  27. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: NeurIPS (2012)

    Google Scholar 

  28. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: ECCV (2018)

    Google Scholar 

  29. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  30. Li, Y., Chen, Y., Wang, N., Zhang, Z.: Scale-aware trident networks for object detection. In: ICCV (2019)

    Google Scholar 

  31. Li, Y., Wu, C.Y., Fan, H., Mangalam, K., Xiong, B., Malik, J., Feichtenhofer, C.: MViTv2: improved multiscale Vision Transformers for classification and detection. arXiv:2112.01526 (2021)

  32. Li, Y., Xie, S., Chen, X., Dollar, P., He, K., Girshick, R.: Benchmarking detection transfer learning with Vision Transformers. arXiv:2111.11429 (2021)

  33. Liang, T., et al.: CBNetV2: a composite backbone network architecture for object detection. arXiv:2107.00420 (2021)

  34. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  35. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  36. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: ECCV (2014)

    Google Scholar 

  37. Liu, W., et al.: SSD: single shot multibox detector. In: ECCV (2016)

    Google Scholar 

  38. Liu, Z., et al.: Swin transformer V2: scaling up capacity and resolution. arXiv:2111.09883 (2021)

  39. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)

    Google Scholar 

  40. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019)

    Google Scholar 

  41. Radford, A., et al.: Learning transferable visual models from natural language supervision (2021)

    Google Scholar 

  42. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  43. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. In: JMLR (2020)

    Google Scholar 

  44. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR (2016)

    Google Scholar 

  45. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  46. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  47. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  48. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: ICCV (2019)

    Google Scholar 

  49. Tolstikhin, I., et al.: MLP-mixer: an all-MLP architecture for vision. In: NeurIPS (2021)

    Google Scholar 

  50. Touvron, H., et al.: ResMLP: feedforward networks for image classification with data-efficient training. arXiv:2105.03404 (2021)

  51. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  52. Wang, W., et al.: Pyramid Vision transformer: a versatile backbone for dense prediction without convolutions. In: ICCV (2021)

    Google Scholar 

  53. Zhai, X., Kolesnikov, A., Houlsby, N., Beyer, L.: Scaling vision transformers. arXiv:2106.04560 (2021)

  54. Zhou, X., Girdhar, R., Joulin, A., Krähenbühl, P., Misra, I.: Detecting twenty-thousand classes using image-level supervision. arXiv:2201.02605 (2022)

  55. Zhou, X., Koltun, V., Krähenbühl, P.: Probabilistic two-stage detection. arXiv preprint arXiv:2103.07461 (2021)

  56. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: ICLR (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanghao Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 387 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Mao, H., Girshick, R., He, K. (2022). Exploring Plain Vision Transformer Backbones for Object Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20077-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20076-2

  • Online ISBN: 978-3-031-20077-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics