Skip to main content

SuperLine3D: Self-supervised Line Segmentation and Description for LiDAR Point Cloud

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Poles and building edges are frequently observable objects on urban roads, conveying reliable hints for various computer vision tasks. To repetitively extract them as features and perform association between discrete LiDAR frames for registration, we propose the first learning-based feature segmentation and description model for 3D lines in LiDAR point cloud. To train our model without the time consuming and tedious data labeling process, we first generate synthetic primitives for the basic appearance of target lines, and build an iterative line auto-labeling process to gradually refine line labels on real LiDAR scans. Our segmentation model can extract lines under arbitrary scale perturbations, and we use shared EdgeConv encoder layers to train the two segmentation and descriptor heads jointly. Base on the model, we can build a highly-available global registration module for point cloud registration, in conditions without initial transformation hints. Experiments have demonstrated that our line-based registration method is highly competitive to state-of-the-art point-based approaches. Our code is available at https://github.com/zxrzju/SuperLine3D.git.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: \(\{\)TensorFlow\(\}\): A system for \(\{\)Large-Scale\(\}\) machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283 (2016)

    Google Scholar 

  2. Akinlar, C., Topal, C.: EDLines: a real-time line segment detector with a false detection control. Pattern Recogn. Lett. 32(13), 1633–1642 (2011)

    Article  Google Scholar 

  3. Ao, S., Hu, Q., Yang, B., Markham, A., Guo, Y.: SpinNet: learning a general surface descriptor for 3d point cloud registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11753–11762 (2021)

    Google Scholar 

  4. Bai, X., et al.: PointDSC: robust point cloud registration using deep spatial consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15859–15869 (2021)

    Google Scholar 

  5. Bai, X., Luo, Z., Zhou, L., Fu, H., Quan, L., Tai, C.L.: D3feat: joint learning of dense detection and description of 3d local features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6359–6367 (2020)

    Google Scholar 

  6. Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–606. SPIE (1992)

    Google Scholar 

  7. Biber, P., Straßer, W.: The normal distributions transform: a new approach to laser scan matching. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), vol. 3, pp. 2743–2748. IEEE (2003)

    Google Scholar 

  8. Chen, G., Liu, Y., Dong, J., Zhang, L., Liu, H., Zhang, B., Knoll, A.: Efficient and robust line-based registration algorithm for robot perception under large-scale structural scenes. In: 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 54–62. IEEE (2021)

    Google Scholar 

  9. Choy, C., Dong, W., Koltun, V.: Deep global registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2514–2523 (2020)

    Google Scholar 

  10. Choy, C., Park, J., Koltun, V.: Fully convolutional geometric features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8958–8966 (2019)

    Google Scholar 

  11. DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. In: Proceedings of the IEEE Cnference on Computer Vision and Pattern Recognition Workshops, pp. 224–236 (2018)

    Google Scholar 

  12. Fang, F., Ma, X., Dai, X.: A multi-sensor fusion slam approach for mobile robots. In: IEEE International Conference Mechatronics and Automation, 2005. vol. 4, pp. 1837–1841. IEEE (2005)

    Google Scholar 

  13. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  14. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the Kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  15. Gu, X., Wang, X., Guo, Y.: A review of research on point cloud registration methods. IOP Conf. Ser. Mater. Sci. Eng. 782(2), 022070 (2020)

    Article  Google Scholar 

  16. Huang, S., Qin, F., Xiong, P., Ding, N., He, Y., Liu, X.: TP-LSD: tri-points based line segment detector. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 770–785. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_46

    Chapter  Google Scholar 

  17. Huang, X., Mei, G., Zhang, J.: Feature-metric registration: a fast semi-supervised approach for robust point cloud registration without correspondences. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11366–11374 (2020)

    Google Scholar 

  18. Huang, X., Mei, G., Zhang, J., Abbas, R.: A comprehensive survey on point cloud registration. arXiv preprint arXiv:2103.02690 (2021)

  19. Khan, M.U., Zaidi, S.A.A., Ishtiaq, A., Bukhari, S.U.R., Samer, S., Farman, A.: A comparative survey of lidar-slam and lidar based sensor technologies. In: 2021 Mohammad Ali Jinnah University International Conference on Computing (MAJICC), pp. 1–8. IEEE (2021)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  21. Li, J., Lee, G.H.: USIP: unsupervised stable interest point detection from 3d point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 361–370 (2019)

    Google Scholar 

  22. Lu, F., et al.: HRegNet: a hierarchical network for large-scale outdoor lidar point cloud registration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16014–16023 (2021)

    Google Scholar 

  23. Lu, W., Zhou, Y., Wan, G., Hou, S., Song, S.: L3-net: towards learning based lidar localization for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6389–6398 (2019)

    Google Scholar 

  24. Lu, X., Liu, Y., Li, K.: Fast 3d line segment detection from unorganized point cloud. arXiv preprint arXiv:1901.02532 (2019)

  25. Pais, G.D., Ramalingam, S., Govindu, V.M., Nascimento, J.C., Chellappa, R., Miraldo, P.: 3dregnet: a deep neural network for 3d point registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7193–7203 (2020)

    Google Scholar 

  26. Pautrat, R., Lin, J.T., Larsson, V., Oswald, M.R., Pollefeys, M.: Sold2: self-supervised occlusion-aware line description and detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11368–11378 (2021)

    Google Scholar 

  27. Perez-Gonzalez, J., Luna-Madrigal, F., Piña-Ramirez, O.: Deep learning point cloud registration based on distance features. IEEE Latin Am. Trans. 17(12), 2053–2060 (2019)

    Article  Google Scholar 

  28. Pomerleau, F., Colas, F., Siegwart, R.: A review of point cloud registration algorithms for mobile robotics. Found. Trends Robot. 4(1), 1–104 (2015)

    Article  Google Scholar 

  29. Pumarola, A., Vakhitov, A., Agudo, A., Sanfeliu, A., Moreno-Noguer, F.: Pl-slam: real-time monocular visual slam with points and lines. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4503–4508. IEEE (2017)

    Google Scholar 

  30. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  31. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  32. Rozenberszki, D., Majdik, A.L.: Lol: lidar-only odometry and localization in 3d point cloud maps. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 4379–4385. IEEE (2020)

    Google Scholar 

  33. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3d registration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217. IEEE (2009)

    Google Scholar 

  34. Sarode, V., Li, X., Goforth, H., Aoki, Y., Srivatsan, R.A., Lucey, S., Choset, H.: PCRNet: point cloud registration network using pointnet encoding. arXiv preprint arXiv:1908.07906 (2019)

  35. Shan, T., Englot, B.: Lego-loam: lightweight and ground-optimized lidar odometry and mapping on variable terrain. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4758–4765. IEEE (2018)

    Google Scholar 

  36. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6411–6420 (2019)

    Google Scholar 

  37. Von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a line segment detector. Image Process. Line 2, 35–55 (2012)

    Article  Google Scholar 

  38. Wang, X., Liu, S., Shen, X., Shen, C., Jia, J.: Associatively segmenting instances and semantics in point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4096–4105 (2019)

    Google Scholar 

  39. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (tog) 38(5), 1–12 (2019)

    Article  Google Scholar 

  40. Zhang, H., Luo, Y., Qin, F., He, Y., Liu, X.: ELSD: efficient line segment detector and descriptor. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2969–2978 (2021)

    Google Scholar 

  41. Zhang, J., Singh, S.: Loam: Lidar odometry and mapping in real-time. In: Robotics: Science and Systems. Berkeley, CA (2014)

    Google Scholar 

  42. Zhang, L., Koch, R.: An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency. J. Vis. Commun. Image Representation 24(7), 794–805 (2013)

    Article  Google Scholar 

  43. Zhang, Z., Dai, Y., Sun, J.: Deep learning based point cloud registration: an overview. Virtual Reality Intell. Hardware 2(3), 222–246 (2020)

    Article  Google Scholar 

  44. Zhong, Y.: Intrinsic shape signatures: a shape descriptor for 3d object recognition. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 689–696. IEEE (2009)

    Google Scholar 

  45. Zhou, Q.-Y., Park, J., Koltun, V.: Fast global registration. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 766–782. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_47

    Chapter  Google Scholar 

  46. Zhou, Q.Y., Park, J., Koltun, V.: Open3d: a modern library for 3d data processing. arXiv preprint arXiv:1801.09847 (2018)

Download references

Acknowledgments

This work is supported by the National Key R &D Program of China (Grant No: 2018AAA0101503) and Alibaba-Zhejiang University Joint Institute of Frontier Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, X. et al. (2022). SuperLine3D: Self-supervised Line Segmentation and Description for LiDAR Point Cloud. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13669. Springer, Cham. https://doi.org/10.1007/978-3-031-20077-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20077-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20076-2

  • Online ISBN: 978-3-031-20077-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics