Skip to main content

A-OKVQA: A Benchmark for Visual Question Answering Using World Knowledge

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13668))

Included in the following conference series:

Abstract

The Visual Question Answering (VQA) task aspires to provide a meaningful testbed for the development of AI models that can jointly reason over visual and natural language inputs. Despite a proliferation of VQA datasets, this goal is hindered by a set of common limitations. These include a reliance on relatively simplistic questions that are repetitive in both concepts and linguistic structure, little world knowledge needed outside of the paired image, and limited reasoning required to arrive at the correct answer. We introduce A-OKVQA, a crowdsourced dataset composed of a diverse set of about 25K questions requiring a broad base of commonsense and world knowledge to answer. In contrast to existing knowledge-based VQA datasets, the questions generally cannot be answered by simply querying a knowledge base, and instead require some form of commonsense reasoning about the scene depicted in the image. We demonstrate the potential of this new dataset through a detailed analysis of its contents and baseline performance measurements over a variety of state-of-the-art vision–language models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Specifically multi-qa-MiniLM-L6-cos-v1 [14] to avoid overlap with RoBERTa.

  2. 2.

    To make this comparison even, we chose a random subset of our test set to be the same size as OK-VQA test set so that the minimum is over the same number of possible choices in both cases.

  3. 3.

    Cosine similarity between mean GloVe [16, 34] word embeddings.

  4. 4.

    We use the second largest available GPT-3 model, Curie, as in [48].

  5. 5.

    For ease of analysis we count a binary yes/no of whether a model answered correctly if it answered any possible answer in the direct answer set.

References

  1. Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: CVPR (2018)

    Google Scholar 

  2. Antol, S., et al.: VQA: visual question answering. In: ICCV (2015)

    Google Scholar 

  3. Banerjee, S., Lavie, A.: METEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In: ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization (2005)

    Google Scholar 

  4. Brown, T.B., et al.: Language models are few-shot learners. In: NeurIPS (2020)

    Google Scholar 

  5. Chang, Y., Narang, M.B., Suzuki, H., Cao, G., Gao, J., Bisk, Y.: WebQA: multihop and multimodal QA. arXiv (2021)

    Google Scholar 

  6. Chen, X., et al.: Microsoft COCO captions: data collection and evaluation server. arXiv (2015)

    Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019)

    Google Scholar 

  8. Gao, H., Mao, J., Zhou, J., Huang, Z., Wang, L., Xu, W.: Are you talking to a machine? dataset and methods for multilingual image question. In: NeurIPS (2015)

    Google Scholar 

  9. García, N., Otani, M., Chu, C., Nakashima, Y.: KnowIT VQA: answering knowledge-based questions about videos. In: AAAI (2020)

    Google Scholar 

  10. Geman, D., Geman, S., Hallonquist, N., Younes, L.: Visual turing test for computer vision systems. Proc. Natl. Acad. Sci. 112, 3618–3623 (2015)

    Article  Google Scholar 

  11. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in VQA matter: elevating the role of image understanding in visual question answering. In: CVPR (2017)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  13. Hudson, D.A., Manning, C.D.: GQA: a new dataset for real-world visual reasoning and compositional question answering. In: CVPR (2019)

    Google Scholar 

  14. HuggingFace: https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1

  15. HuggingFace: https://huggingface.co/sentence-transformers/nli-bert-base

  16. HuggingFace: https://huggingface.co/sentence-transformers/average_word_embeddings_glove.6B.300d

  17. Hussain, Z., et al.: Automatic understanding of image and video advertisements. In: CVPR (2017)

    Google Scholar 

  18. Jain, A., Kothyari, M., Kumar, V., Jyothi, P., Ramakrishnan, G., Chakrabarti, S.: Select, substitute, search: a new benchmark for knowledge-augmented visual question answering. In: SIGIR (2021)

    Google Scholar 

  19. Jiang, Y., Natarajan, V., Chen, X., Rohrbach, M., Batra, D., Parikh, D.: Pythia v0.1: the winning entry to the VQA challenge 2018. arXiv (2018)

    Google Scholar 

  20. Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C.L., Girshick, R.: CLEVR: a diagnostic dataset for compositional language and elementary visual reasoning. In: CVPR (2017)

    Google Scholar 

  21. Kamath, A., Clark, C., Gupta, T., Kolve, E., Hoiem, D., Kembhavi, A.: Webly supervised concept expansion for general purpose vision models. arXiv (2022)

    Google Scholar 

  22. Krishna, R., et al.: Visual Genome: connecting language and vision using crowdsourced dense image annotations. IJCV 123, 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  23. Li, Q., Fu, J., Yu, D., Mei, T., Luo, J.: Tell-and-answer: towards explainable visual question answering using attributes and captions. In: EMNLP (2018)

    Google Scholar 

  24. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  25. Liu, H., Singh, P.: ConceptNet-a practical commonsense reasoning tool-kit. BT Technol. J. 22, 211–226 (2004)

    Article  Google Scholar 

  26. Liu, Y., et al.: RoBERTa: a robustly optimized bert pretraining approach. arXiv (2019)

    Google Scholar 

  27. Lu, J., Batra, D., Parikh, D., Lee, S.: VilBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In: NeurIPS (2019)

    Google Scholar 

  28. Lu, J., Goswami, V., Rohrbach, M., Parikh, D., Lee, S.: 12-in-1: Multi-task vision and language representation learning. In: CVPR (2020)

    Google Scholar 

  29. Malinowski, M., Fritz, M.: A multi-world approach to question answering about real-world scenes based on uncertain input. In: NeurIPS (2014)

    Google Scholar 

  30. Marino, K., Chen, X., Parikh, D., Gupta, A.K., Rohrbach, M.: KRISP: integrating implicit and symbolic knowledge for open-domain knowledge-based VQA. In: CVPR (2021)

    Google Scholar 

  31. Marino, K., Rastegari, M., Farhadi, A., Mottaghi, R.: OK-VQA: a visual question answering benchmark requiring external knowledge. In: CVPR (2019)

    Google Scholar 

  32. Mokady, R., Hertz, A., Bermano, A.H.: ClipCap: CLIP prefix for image captioning. arXiv (2021)

    Google Scholar 

  33. Park, D.H., et al.: Multimodal explanations: justifying decisions and pointing to the evidence. In: CVPR (2018)

    Google Scholar 

  34. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: EMNLP (2014)

    Google Scholar 

  35. Post, M.: A call for clarity in reporting BLEU scores. In: Conference on Machine Translation (2018)

    Google Scholar 

  36. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)

    Google Scholar 

  37. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI blog (2019)

    Google Scholar 

  38. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR 21, 1–67 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Ren, M., Kiros, J., Zemel, R.S.: Exploring models and data for image question answering. In: NeurIPS (2015)

    Google Scholar 

  40. Shah, S., Mishra, A., Yadati, N., Talukdar, P.P.: KVQA: knowledge-aware visual question answering. In: AAAI (2019)

    Google Scholar 

  41. Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: ACL (2018)

    Google Scholar 

  42. Singh, A., et al.: MMF: a multimodal framework for vision and language research (2020). https://github.com/facebookresearch/mmf

  43. Singh, A., et al.: Towards VQA models that can read. In: CVPR (2019)

    Google Scholar 

  44. Tan, H.H., Bansal, M.: LXMERT: learning cross-modality encoder representations from transformers. In: EMNLP (2019)

    Google Scholar 

  45. Tapaswi, M., Zhu, Y., Stiefelhagen, R., Torralba, A., Urtasun, R., Fidler, S.: MovieQA: understanding stories in movies through question-answering. In: CVPR (2016)

    Google Scholar 

  46. Wang, P., Wu, Q., Shen, C., Dick, A.R., van den Hengel, A.: Explicit knowledge-based reasoning for visual question answering. In: IJCAI (2017)

    Google Scholar 

  47. Wang, P., Wu, Q., Shen, C., van den Hengel, A., Dick, A.R.: FVQA: fact-based visual question answering. TPAMI 40, 2413–2427 (2017)

    Article  Google Scholar 

  48. West, P., et al.: Symbolic knowledge distillation: from general language models to commonsense models. arXiv preprint arXiv:2110.07178 (2021)

  49. Yang, Z., et al.: An empirical study of GPT-3 for few-shot knowledge-based VQA. arXiv (2021)

    Google Scholar 

  50. Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., Tenenbaum, J.B.: Neural-symbolic VQA: disentangling reasoning from vision and language understanding. In: NeurIPS (2018)

    Google Scholar 

  51. Yu, L., Park, E., Berg, A.C., Berg, T.L.: Visual madlibs: fill in the blank description generation and question answering. In: ICCV (2015)

    Google Scholar 

  52. Zellers, R., Bisk, Y., Farhadi, A., Choi, Y.: From recognition to cognition: visual commonsense reasoning. In: CVPR (2019)

    Google Scholar 

  53. Zhang, P., et al.: VinVL: revisiting visual representations in vision-language models. In: CVPR (2021)

    Google Scholar 

  54. Zhu, X., Anguelov, D., Ramanan, D.: Capturing long-tail distributions of object subcategories. In: CVPR (2014)

    Google Scholar 

  55. Zhu, Y., Groth, O., Bernstein, M.S., Fei-Fei, L.: Visual7W: grounded question answering in images. In: CVPR (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roozbeh Mottaghi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6552 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schwenk, D., Khandelwal, A., Clark, C., Marino, K., Mottaghi, R. (2022). A-OKVQA: A Benchmark for Visual Question Answering Using World Knowledge. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20074-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20073-1

  • Online ISBN: 978-3-031-20074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics