Skip to main content

Capturing, Reconstructing, and Simulating: The UrbanScene3D Dataset

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

We present UrbanScene3D, a large-scale data platform for research of urban scene perception and reconstruction. UrbanScene3D contains over 128k high-resolution images covering 16 scenes including large-scale real urban regions and synthetic cities with 136 km\(^2\) area in total. The dataset also contains high-precision LiDAR scans and hundreds of image sets with different observation patterns, which provide a comprehensive benchmark to design and evaluate aerial path planning and 3D reconstruction algorithms. In addition, the dataset, which is built on Unreal Engine and Airsim simulator together with the manually annotated unique instance label for each building in the dataset, enables the generation of all kinds of data, e.g., 2D depth maps, 2D/3D bounding boxes, and 3D point cloud/mesh segmentations, etc. The simulator with physical engine and lighting system not only produce variety of data but also enable users to simulate cars or drones in the proposed urban environment for future research. The dataset with aerial path planning and 3D reconstruction benchmark is available at: https://vcc.tech/UrbanScene3D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.dji.com/dji-terra.

  2. 2.

    https://www.bentley.com/en/products/brands/contextcapture.

  3. 3.

    https://www.dji.com/matrice-300.

  4. 4.

    https://www.dji.com/phantom-4-rtk.

References

  1. Armeni, I., Sax, A., Zamir, A.R., Savarese, S.: Joint 2D–3D-semantic data for indoor scene understanding. arXiv preprint arXiv:1702.01105 (2017)

  2. Behley, J., et al.: SemanticKITTI: a dataset for semantic scene understanding of lidar sequences. In: Proceedings of International Conference on Computer Vision, pp. 9297–9307 (2019)

    Google Scholar 

  3. Bergmann, P., Meinhardt, T., Leal-Taixe, L.: Tracking without bells and whistles. In: Proceedings of IEEE International Conference on Pattern Recognition, pp. 941–951 (2019)

    Google Scholar 

  4. Brunel, A., Bourki, A., Strauss, O., Demonceaux, C.: FLYBO: a unified benchmark environment for autonomous flying robots. In: International Conference on 3D Vision, pp. 1420–1431 (2021)

    Google Scholar 

  5. Chaquet, J.M., Carmona, E.J., Fernández-Caballero, A.: A survey of video datasets for human action and activity recognition. In: Computer Vision and Image Understanding, pp. 633–659 (2013)

    Google Scholar 

  6. Chen, K., et al.: A behavioral approach to visual navigation with graph localization networks. In: Proceedings of Robotics: Science and Systems, pp. 1–10 (2019)

    Google Scholar 

  7. Chen, Z., Tagliasacchi, A., Zhang, H.: BSP-Net: generating compact meshes via binary space partitioning. In: Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, pp. 45–54 (2020)

    Google Scholar 

  8. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, pp. 5939–5948 (2019)

    Google Scholar 

  9. Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3d object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38

    Chapter  Google Scholar 

  10. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  11. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, pp. 2432–2443 (2017)

    Google Scholar 

  12. Du, D., et al.: The unmanned aerial vehicle benchmark: Object detection and tracking. In: Proceedings of European Conference on Computer Vision Workshops, pp. 370–386 (2018)

    Google Scholar 

  13. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, pp. 3354–3361 (2012)

    Google Scholar 

  14. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: AtlasNet: a Papier-Mâché approach to learning 3D surface generation. In: Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, pp. 216–224 (2018)

    Google Scholar 

  15. Gupta, S., Davidson, J., Levine, S., Sukthankar, R., Malik, J.: Cognitive mapping and planning for visual navigation. In: Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, pp. 2616–2625 (2017)

    Google Scholar 

  16. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: Proceedings of International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  17. Hepp, B., Nießner, M., Hilliges, O.: Plan3D: Viewpoint and trajectory optimization for aerial multi-view stereo reconstruction. ACM Trans. Graph. 38, 4:1–4:17 (2018)

    Google Scholar 

  18. Hua, B.S., Pham, Q.H., Nguyen, D.T., Tran, M.K., Yu, L.F., Yeung, S.K.: SceneNN: a scene meshes dataset with aNNotations. In: International Conference on 3D Vision, pp. 92–101 (2016)

    Google Scholar 

  19. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. (Proc. SIGGRAPH). 36, 78:1–78:13 (2017)

    Google Scholar 

  20. Koch, T., Körner, M., Fraundorfer, F.: Automatic and semantically-aware 3D UAV flight planning for image-based 3D reconstruction. Remote Sens. 11, 1550 (2019)

    Article  Google Scholar 

  21. Liu, J., Ji, S.: A novel recurrent encoder-decoder structure for large-scale multi-view stereo reconstruction from an open aerial dataset. In: Proceedings IEEE Conference on Computer Vision & Pattern Recognition, pp. 6050–6059 (2020)

    Google Scholar 

  22. Liu, Y., Cui, R., Xie, K., Gong, M., Huang, H.: Aerial path planning for online real-time exploration and offline high-quality reconstruction of large-scale urban scenes. ACM Trans. Graph. (Proc. SIGGRAPH Asia). 226:1–226:16 (2021)

    Google Scholar 

  23. Liu, Y., Xie, K., Huang, H.: VGF-Net: Visual-geometric fusion learning for simultaneous drone navigation and height mapping. Graph. Models. 116, 101108:1–101108:9 (2021)

    Google Scholar 

  24. Luo, X., Huang, J., Szeliski, R., Matzen, K., Kopf, J.: Consistent video depth estimation. ACM Trans. Graph. (Proc. SIGGRAPH). 39, 71:1–71:13 (2020)

    Google Scholar 

  25. Lyu, Y., Vosselman, G., Xia, G.S., Yilmaz, A., Yang, M.Y.: UAVid: a semantic segmentation dataset for UAV imagery. ISPRS J. Photogram. Remote Sens. 165, 108–119 (2020)

    Article  Google Scholar 

  26. Mandal, M., Kumar, L.K., Vipparthi, S.K.: MOR-UAV: a benchmark dataset and baselines for moving object recognition in UAV videos. In: Proceedings of ACM Conference on Multimedia, pp. 2626–2635 (2020)

    Google Scholar 

  27. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  28. Mo, K., et al.: PartNet: a large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding. In: Proceedings of IEEE Conf. on Computer Vision & Pattern Recognition, pp. 909–918 (2019)

    Google Scholar 

  29. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 445–461. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_27

    Chapter  Google Scholar 

  30. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  31. Perera, A.G., Law, Y.W., Chahl, J.: UAV-GESTURE: a dataset for UAV control and gesture recognition. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11130, pp. 117–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11012-3_9

    Chapter  Google Scholar 

  32. Pisharady, P.K., Saerbeck, M.: Recent methods and databases in vision-based hand gesture recognition: a review. In: Computer Vision and Image Understanding, pp. 152–165 (2015)

    Google Scholar 

  33. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Proceedings of Conference on Neural Information Processing Systems, pp. 5099–5108 (2017)

    Google Scholar 

  34. Roberts, M., et al.: Submodular trajectory optimization for aerial 3D scanning. In: Proceedings of International Conference on Computer Vision, pp. 5324–5333 (2017)

    Google Scholar 

  35. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The Synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, pp. 3234–3243 (2016)

    Google Scholar 

  36. Schmid, K., Hirschmüller, H., Dömel, A., Grixa, I., Suppa, M., Hirzinger, G.: View planning for multi-view stereo 3D reconstruction using an autonomous multicopter. J. Intell. Robot. Syst. 65, 309–323 (2012)

    Article  Google Scholar 

  37. Smith, N., Moehrle, N., Goesele, M., Heidrich, W.: Aerial path planning for urban scene reconstruction: a continuous optimization method and benchmark. ACM Trans. Graph. (Proc. SIGGRAPH Asia). 36, 183:1–183:15 (2018)

    Google Scholar 

  38. Song, X., et al.: ApolloCar3D: a large 3D car instance understanding benchmark for autonomous driving. In: Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, pp. 5447–5457 (2019)

    Google Scholar 

  39. Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, pp. 2446–2454 (2020)

    Google Scholar 

  40. Xia, F., R. Zamir, A., He, Z.Y., Sax, A., Malik, J., Savarese, S.: Gibson ENV: real-world perception for embodied agents. In: Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, pp. 9068–9079 (2018)

    Google Scholar 

  41. Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: deep implicit surface network for high-quality single-view 3D reconstruction. Proc. Conf. on Neural Information Processing Systems pp. 490–500 (2019)

    Google Scholar 

  42. Yao, Y., et al.: BlendedMVS: a large-scale dataset for generalized multi-view stereo networks. In: Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, pp. 1790–1799 (2020)

    Google Scholar 

  43. Yin, W., et al.: Learning to recover 3D scene shape from a single image. In: Proceedings of IEEE Conference on Computer Vision & Pattern Recognition, pp. 204–213 (2021)

    Google Scholar 

  44. Zhang, H., Yao, Y., Xie, K., Fu, C.W., Zhang, H., Huang, H.: Continuous aerial path planning for 3D urban scene reconstruction. ACM Trans. Graph. (Proc. SIGGRAPH Asia). 40, 225:1–225:15 (2021)

    Google Scholar 

  45. Zhang, X., Zhao, P., Hu, Q., Ai, M., Hu, D., Li, J.: A UAV-based panoramic oblique photogrammetry (POP) approach using spherical projection. J. Photogramm. Remote Sens. 159, 198–219 (2020)

    Article  Google Scholar 

  46. Zhou, X., Xie, K., Huang, K., Liu, Y., Zhou, Y., Gong, M., Huang, H.: Offsite aerial path planning for efficient urban scene reconstruction. ACM Trans. Graph. (Proc. SIGGRAPH Asia). 39, 192:1–192:16 (2020)

    Google Scholar 

  47. Zhou, X., Yi, Z., Liu, Y., Huang, K., Huang, H.: Survey on path and view planning for UAVs. Virtual Real. Intell. Hardw. 2, 56–69 (2020)

    Article  Google Scholar 

  48. Zhou, Y., Huang, J., Dai, X., Luo, L., Chen, Z., Ma, Y.: HoliCity: a city-scale data platform for learning holistic 3D structures. arXiv preprint arXiv:2008.03286 (2020)

  49. Zhu, P., et al.: Visdrone-vid2019: the vision meets drone object detection in video challenge results. In: Proceedings of International Conference on Computer Vision Workshops, pp. 1–9 (2019)

    Google Scholar 

  50. Zhu, Y., et al.: Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: Proceedings of IEEE International Conference on Robotics & Automation, pp. 3357–3364 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in parts by NSFC (62161146005, U21B2023, U2001206), GD Talent Program (2019JC05X328), DEGP Innovation Team (2022KCXTD025), Shenzhen Science and Technology Program (KQTD20210811090044003, RCJC20200714114435012, JCYJ20210324120213036), and Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Huang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 20396 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, L., Liu, Y., Hu, Y., Yan, X., Xie, K., Huang, H. (2022). Capturing, Reconstructing, and Simulating: The UrbanScene3D Dataset. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20074-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20073-1

  • Online ISBN: 978-3-031-20074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics