Abstract
The evaluation of 3D face reconstruction results typically relies on a rigid shape alignment between the estimated 3D model and the ground-truth scan. We observe that aligning two shapes with different reference points can largely affect the evaluation results. This poses difficulties for precisely diagnosing and improving a 3D face reconstruction method. In this paper, we propose a novel evaluation approach with a new benchmark REALY, consists of 100 globally aligned face scans with accurate facial keypoints, high-quality region masks, and topology-consistent meshes. Our approach performs region-wise shape alignment and leads to more accurate, bidirectional correspondences during computing the shape errors. The fine-grained, region-wise evaluation results provide us detailed understandings about the performance of state-of-the-art 3D face reconstruction methods. For example, our experiments on single-image based reconstruction methods reveal that DECA performs the best on nose regions, while GANFit performs better on cheek regions. Besides, a new and high-quality 3DMM basis, HIFI3D\(^{\pmb {+}\pmb {+}}\), is further derived using the same procedure as we construct REALY to align and retopologize several 3D face datasets. We will release REALY, HIFI3D\(^{\pmb {+}\pmb {+}}\), and our new evaluation pipeline at https://realy3dface.com.
Z. Chai and H. Zhang—Equal Contributions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP algorithms for surface registration. In: CVPR (2007)
Bagdanov, A.D., Bimbo, A.D., Masi, I.: The Florence 2d/3d hybrid face dataset. In: J-HGBU@MM (2011)
Bai, Z., Cui, Z., Liu, X., Tan, P.: Riggable 3d face reconstruction via in-network optimization. In: CVPR (2021)
Bao, L., et al.: High-fidelity 3d digital human head creation from RGB-D selfies. TOG (2021)
Besl, P.J., McKay, N.D.: A method for registration of 3d shapes. TPAMI (1992)
Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: SIGGRAPH (1999)
Blanz, V., Vetter, T.: Face recognition based on fitting a 3d morphable model. TPAMI (2003)
Booth, J., Roussos, A., Zafeiriou, S., Ponniah, A., Dunaway, D.: A 3d morphable model learnt from 10,000 faces. In: CVPR (2016)
Brunton, A., Salazar, A., Bolkart, T., Wuhrer, S.: Review of statistical shape spaces for 3d data with comparative analysis for human faces. In: CVIU (2014)
Cao, C., Weng, Y., Lin, S., Zhou, K.: 3d shape regression for real-time facial animation. TOG 32, 1 (2013)
Cao, C., Weng, Y., Zhou, S., Tong, Y., Zhou, K.: Facewarehouse: a 3d facial expression database for visual computing. TVCG 20, 413–425 (2014)
Cao, C., Wu, H., Weng, Y., Shao, T., Zhou, K.: Real-time facial animation with image-based dynamic avatars. TOG 35, 1–13 (2016)
Cao, K., Rong, Y., Li, C., Tang, X., Loy, C.C.: Pose-robust face recognition via deep residual equivariant mapping. In: CVPR (2018)
Chang, F., Tran, A.T., Hassner, T., Masi, I., Nevatia, R., Medioni, G.G.: Faceposenet: making a case for landmark-free face alignment. In: ICCV Workshops (2017)
Chang, F., Tran, A.T., Hassner, T., Masi, I., Nevatia, R., Medioni, G.G.: ExpNet: landmark-free, deep, 3d facial expressions. In: FG (2018)
Chaudhuri, B., Vesdapunt, N., Shapiro, L., Wang, B.: Personalized face modeling for improved face reconstruction and motion retargeting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 142–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_9
Chen, Y., Wu, F., Wang, Z., Song, Y., Ling, Y., Bao, L.: Self-supervised learning of detailed 3d face reconstruction. TIP 29, 8696–8705 (2020)
Dai, H., Pears, N.E., Smith, W.A.P., Duncan, C.: Statistical modeling of craniofacial shape and texture. IJCV 128, 547–571 (2020)
Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., Tong, X.: Accurate 3d face reconstruction with weakly-supervised learning: From single image to image set. In: CVPR Workshops (2019)
Dib, A., Thebault, C., Ahn, J., Gosselin, P., Theobalt, C., Chevallier, L.: Towards high fidelity monocular face reconstruction with rich reflectance using self-supervised learning and ray tracing. In: ICCV (2021)
Egger, B., et al.: 3d morphable face models - past, present, and future. TOG. 39, 1–38 (2020)
Feng, Y., Feng, H., Black, M.J., Bolkart, T.: Learning an animatable detailed 3d face model from in-the-wild images. In: SIGGRAPH (2021)
Feng, Y., Wu, F., Shao, X., Wang, Y., Zhou, X.: Joint 3D face reconstruction and dense alignment with position map regression network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 557–574. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_33
Feng, Z., et al.: Evaluation of dense 3d reconstruction from 2d face images in the wild. In: FG (2018)
Gao, Z., Zhang, J., Guo, Y., Ma, C., Zhai, G., Yang, X.: Semi-supervised 3d face representation learning from unconstrained photo collections. In: CVPR Workshops (2020)
Gecer, B., Ploumpis, S., Kotsia, I., Zafeiriou, S.: GANFIT: generative adversarial network fitting for high fidelity 3d face reconstruction. In: CVPR (2019)
Gecer, B., Ploumpis, S., Kotsia, I., Zafeiriou, S.: Fast-GANFIT: generative adversarial network for high fidelity 3d face reconstruction. TPAMI (2021)
Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., Freeman, W.T.: Unsupervised training for 3d morphable model regression. In: CVPR (2018)
Guo, J., Zhu, X., Yang, Y., Yang, F., Lei, Z., Li, S.Z.: Towards Fast, Accurate and Stable 3D Dense Face Alignment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 152–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_10
Hu, L., et al.: Avatar digitization from a single image for real-time rendering. TOG 36, 1–4 (2017)
Jiang, D., et al.: Reconstructing recognizable 3d face shapes based on 3d morphable models. CoRR, abs/2104.03515 (2021)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)
Lattas, A., et al.: Avatarme: Realistically renderable 3d facial reconstruction “in-the-wild”. In: CVPR (2020)
Lee, G., Lee, S.: Uncertainty-aware mesh decoder for high fidelity 3d face reconstruction. In: CVPR (2020)
Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4d scans. TOG (2017)
Lin, J., Yuan, Y., Shao, T., Zhou, K.: Towards high-fidelity 3d face reconstruction from in-the-wild images using graph convolutional networks. In: CVPR (2020)
Lin, J., Yuan, Y., Zou, Z.: Meingame: create a game character face from a single portrait. In: AAAI (2021)
Liu, F., Zhu, R., Zeng, D., Zhao, Q., Liu, X.: Disentangling features in 3d face shapes for joint face reconstruction and recognition. In: CVPR (2018)
Liu, P., Han, X., Lyu, M.R., King, I., Xu, J.: Learning 3d face reconstruction with a pose guidance network. In: ACCV (2020)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)
Luo, H., et al.: Normalized avatar synthesis using styleGAN and perceptual refinement. In: CVPR (2021)
Lyu, J., Li, X., Zhu, X., Cheng, C.: Pixel-face: A large-scale, high-resolution benchmark for 3d face reconstruction. arXiv preprint arXiv:2008.12444 (2020)
Ma, S., et al.: Pixel codec avatars. In: CVPR (2021)
Pan, X., Dai, B., Liu, Z., Chen, C.L., Luo, P.: Do 2d GANs know 3d shape? Unsupervised 3d shape reconstruction from 2d image GANs. In: ICLR (2021)
Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3d face model for pose and illumination invariant face recognition. In: AVSS (2009)
Phillips, P.J., et al.: Overview of the face recognition grand challenge. In: CVPR (2005)
Piao, J., Sun, K., Wang, Q., Lin, K., Li, H.: Inverting generative adversarial renderer for face reconstruction. In: CVPR (2021)
Ploumpis, S., Wang, H., Pears, N.E., Smith, W.A.P., Zafeiriou, S.: Combining 3d morphable models: a large scale face-and-head model. In: CVPR (2019)
R, M.B., Tewari, A., Seidel, H., Elgharib, M., Theobalt, C.: Learning complete 3d morphable face models from images and videos. In: CVPR (2021)
Ramon, E., et al.: H3D-Net: few-shot high-fidelity 3d head reconstruction. In: ICCV (2021)
Richardson, E., Sela, M., Kimmel, R.: 3d face reconstruction by learning from synthetic data. In: 3DV (2016)
Sanyal, S., Bolkart, T., Feng, H., Black, M.J.: Learning to regress 3d face shape and expression from an image without 3d supervision. In: CVPR (2019)
Sela, M., Richardson, E., Kimmel, R.: Unrestricted facial geometry reconstruction using image-to-image translation. In: ICCV (2017)
Shang, J., et al.: Self-supervised monocular 3d face reconstruction by occlusion-aware multi-view geometry consistency. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 53–70. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_4
Smith, W.A.P., Seck, A., Dee, H., Tiddeman, B., Tenenbaum, J.B., Egger, B.: A morphable face albedo model. In: CVPR (2020)
Stratou, G., Ghosh, A., Debevec, P.E., Morency, L.P.: Effect of illumination on automatic expression recognition: a novel 3d relightable facial database. In: FG (2011)
Tewari, A., et al.: MoFA: Model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In: ICCV (2017)
Thies, J., Zollhöfer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2face: Real-time face capture and reenactment of RGB videos. In: CVPR (2016)
Tran, A.T., Hassner, T., Masi, I., Medioni, G.G.: Regressing robust and discriminative 3d morphable models with a very deep neural network. In: CVPR (2017)
Tran, L., Liu, F., Liu, X.: Towards high-fidelity nonlinear 3d face morphable model. In: CVPR (2019)
Tran, L., Liu, X.: Nonlinear 3d face morphable model. In: CVPR (2018)
Tran, L., Liu, X.: On learning 3d face morphable model from in-the-wild images. TPAMI 43, 157–171 (2021)
Wen, Y., Liu, W., Raj, B., Singh, R.: Self-supervised 3d face reconstruction via conditional estimation. In: ICCV (2021)
Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. TPAMI (2009)
Wu, F., et al.: MVF-Net: multi-view 3d face morphable model regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 959–968 (2019)
Wu, S., Rupprecht, C., Vedaldi, A.: Unsupervised learning of probably symmetric deformable 3d objects from images in the wild. In: CVPR (2020)
Yamaguchi, S., et al.: High-fidelity facial reflectance and geometry inference from an unconstrained image. TOG. 37, 1–4 (2018)
Yang, H., et al.: Facescape: a large-scale high quality 3d face dataset and detailed riggable 3d face prediction. In: CVPR (2020)
Yenamandra, T., et al.: i3DMM: deep implicit 3d morphable model of human heads. In: CVPR (2021)
Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.J.: A 3d facial expression database for facial behavior research. In: FG (2006)
Zeng, X., Peng, X., Qiao, Y.: DF2Net: a dense-fine-finer network for detailed 3d face reconstruction. In: ICCV (2019)
Zhang, Z., et al.: Learning to aggregate and personalize 3d face from in-the-wild photo collection. In: CVPR (2021)
Zhu, X., Liu, X., Lei, Z., Li, S.Z.: Face alignment in full pose range: a 3d total solution. TPAMI. 41, 18–92 (2019)
Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: CVPR (2012)
Zhu, X., et al.: Beyond 3DMM space: towards fine-grained 3d face reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 343–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_21
Zollhöfer, M., et al.: State of the art on monocular 3d face reconstruction, tracking, and applications. In: CGF (2018)
Acknowledgment
This work was supported by SZSTC Grant No. JCYJ20190 809172201639 and WDZC20200820200655001, Shenzhen Key Laboratory ZDSY S20210623092001004.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chai, Z. et al. (2022). REALY: Rethinking the Evaluation of 3D Face Reconstruction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-20074-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20073-1
Online ISBN: 978-3-031-20074-8
eBook Packages: Computer ScienceComputer Science (R0)