Skip to main content

TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual Environments

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13668))

Included in the following conference series:

Abstract

High-quality structured data with rich annotations are critical components in intelligent vehicle systems dealing with road scenes. However, data curation and annotation require intensive investments and yield low-diversity scenarios. The recently growing interest in synthetic data raises questions about the scope of improvement in such systems and the amount of manual work still required to produce high volumes and variations of simulated data. This work proposes a synthetic data generation pipeline that utilizes existing datasets, like nuScenes, to address the difficulties and domain-gaps present in simulated datasets. We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation, mimicking real scene properties with high-fidelity, along with mechanisms to diversify samples in a physically meaningful way. We demonstrate improvements in mIoU metrics by presenting qualitative and quantitative experiments with real and synthetic data for semantic segmentation on the Cityscapes and KITTI-STEP datasets. All relevant code and data is released on github\(^{3}\) (https://github.com/shubham1810/trove_toolkit).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baidu Apollo team: Apollo: Open Source Autonomous Driving (2017). https://github.com/apolloauto/apollo. Accessed 11 Feb 2022

  2. Alhaija, H., Mustikovela, S., Mescheder, L., Geiger, A., Rother, C.: Augmented reality meets computer vision: efficient data generation for urban driving scenes. Int. J. Comput. Vis. (IJCV) 126, 961–972 (2018)

    Article  Google Scholar 

  3. Atapour-Abarghouei, A., Breckon, T.P.: Real-time monocular depth estimation using synthetic data with domain adaptation via image style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2800–2810 (2018)

    Google Scholar 

  4. Behley, J., et al.: Semantickitti: a dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9297–9307 (2019)

    Google Scholar 

  5. Cabon, Y., Murray, N., Humenberger, M.: Virtual kitti 2. arXiv preprint arXiv:2001.10773 (2020)

  6. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: CVPR (2020)

    Google Scholar 

  7. Cai, P., Lee, Y., Luo, Y., Hsu, D.: SUMMIT: a simulator for urban driving in massive mixed traffic. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 4023–4029 (2020). https://doi.org/10.1109/ICRA40945.2020.9197228

  8. CGTrader: 3d model store. https://www.cgtrader.com/

  9. Chang, A.X., et al.: ShapeNet: an information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)

  10. Chang, M.F., et al.: Argoverse: 3d tracking and forecasting with rich maps. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8748–8757 (2019)

    Google Scholar 

  11. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  12. Chen, W., et al.: Contrastive syn-to-real generalization. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=F8whUO8HNbP

  13. Blender Online Community: Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam (2018). http://www.blender.org

  14. PolyHaven Community: 3d model and texture store. https://polyhaven.com/

  15. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  16. Cordts, M., et al.: The cityscapes dataset. In: CVPR Workshop on The Future of Datasets in Vision (2015)

    Google Scholar 

  17. Denninger, M., et al.: Blenderproc. arXiv preprint arXiv:1911.01911 (2019)

  18. Devaranjan, J., Kar, A., Fidler, S.: Meta-Sim2: unsupervised learning of scene structure for synthetic data generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 715–733. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_42

    Chapter  Google Scholar 

  19. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Conference on Robot Learning, pp. 1–16. PMLR (2017)

    Google Scholar 

  20. Falcon, W., et al.: PyTorch lightning. GitHub 3, 6 (2019). https://github.com/PyTorchLightning/pytorch-lightning

  21. Gählert, N., Jourdan, N., Cordts, M., Franke, U., Denzler, J.: Cityscapes 3d: dataset and benchmark for 9 DoF vehicle detection. arXiv preprint arXiv:2006.07864 (2020)

  22. Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4340–4349 (2016)

    Google Scholar 

  23. Hoyer, L., Dai, D., Van Gool, L.: DAFormer: improving network architectures and training strategies for domain-adaptive semantic segmentation. arXiv preprint arXiv:2111.14887 (2021)

  24. Huang, X., et al.: The apolloscape dataset for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 954–960 (2018)

    Google Scholar 

  25. Trimble Inc: https://3dwarehouse.sketchup.com/

  26. Josifovski, J., Kerzel, M., Pregizer, C., Posniak, L., Wermter, S.: Object detection and pose estimation based on convolutional neural networks trained with synthetic data. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6269–6276. IEEE (2018)

    Google Scholar 

  27. Kishore, A., Choe, T.E., Kwon, J., Park, M., Hao, P., Mittel, A.: Synthetic data generation using imitation training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3078–3086 (2021)

    Google Scholar 

  28. Li, Z., et al.: OpenRooms: an end-to-end open framework for photorealistic indoor scene datasets. arXiv preprint arXiv:2007.12868 (2020)

  29. Liao, Y., Xie, J., Geiger, A.: Kitti-360: a novel dataset and benchmarks for urban scene understanding in 2d and 3d. arXiv preprint arXiv:2109.13410 (2021)

  30. Luo, Y., Cai, P., Hsu, D., Lee, W.S.: GAMMA: a general agent motion prediction model for autonomous driving. arXiv preprint arXiv:1906.01566 (2019)

  31. Mayer, N.: What makes good synthetic training data for learning disparity and optical flow estimation? Int. J. Comput. Vision 126(9), 942–960 (2018)

    Article  Google Scholar 

  32. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  33. Nowruzi, F.E., Kapoor, P., Kolhatkar, D., Hassanat, F.A., Laganiere, R., Rebut, J.: How much real data do we actually need: analyzing object detection performance using synthetic and real data. arXiv preprint arXiv:1907.07061 (2019)

  34. OpenStreetMap contributors: planet dump retrieved from https://planet.osm.org (2017). https://www.openstreetmap.org

  35. Prakash, A., et al.: Self-supervised real-to-sim scene generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16044–16054 (2021)

    Google Scholar 

  36. Prochitecture: Blender-OSM: OpenStreetMap and terrain for blender (2021). https://github.com/vvoovv/blender-osm

  37. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graphics Appl. 21(5), 34–41 (2001)

    Article  Google Scholar 

  38. Roberts, M., et al.: Hypersim: a photorealistic synthetic dataset for holistic indoor scene understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10912–10922 (2021)

    Google Scholar 

  39. Rong, G., et al.: LGSVL simulator: a high fidelity simulator for autonomous driving. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6. IEEE (2020)

    Google Scholar 

  40. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3234–3243 (2016)

    Google Scholar 

  41. Ruiz, N., Schulter, S., Chandraker, M.: Learning to simulate. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=HJgkx2Aqt7

  42. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles. In: Hutter, M., Siegwart, R. (eds.) Field and Service Robotics. SPAR, vol. 5, pp. 621–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67361-5_40

    Chapter  Google Scholar 

  43. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472–7481 (2018)

    Google Scholar 

  44. Varma, G., Subramanian, A., Namboodiri, A., Chandraker, M., Jawahar, C.: IDD: a dataset for exploring problems of autonomous navigation in unconstrained environments. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1743–1751 (2019). https://doi.org/10.1109/WACV.2019.00190

  45. Varol, G., et al.: Learning from synthetic humans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 109–117 (2017)

    Google Scholar 

  46. Voigtlaender, P., et al.: MOTS: multi-object tracking and segmentation. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  47. Wang, J., et al.: AdvSim: generating safety-critical scenarios for self-driving vehicles. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9909–9918 (2021)

    Google Scholar 

  48. Weber, M., et al.: Step: segmenting and tracking every pixel. In: Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks (2021)

    Google Scholar 

  49. Wrenninge, M., Unger, J.: Synscapes: a photorealistic synthetic dataset for street scene parsing. arXiv preprint arXiv:1810.08705 (2018)

  50. Wulff, J., Butler, D.J., Stanley, G.B., Black, M.J.: Lessons and insights from creating a synthetic optical flow benchmark. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7584, pp. 168–177. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33868-7_17

    Chapter  Google Scholar 

  51. Zheng, G., Liu, H., Xu, K., Li, Z.: Learning to simulate vehicle trajectories from demonstrations. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 1822–1825. IEEE (2020)

    Google Scholar 

Download references

Acknowledgements

This work is funded by iHub-data and mobility at IIIT Hyderabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubham Dokania .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 18081 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dokania, S., Subramanian, A., Chandraker, M., Jawahar, C.V. (2022). TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual Environments. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20074-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20073-1

  • Online ISBN: 978-3-031-20074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics