Skip to main content

The Missing Link: Finding Label Relations Across Datasets

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13668))

Included in the following conference series:

Abstract

Computer vision is driven by the many datasets available for training or evaluating novel methods. However, each dataset has a different set of class labels, visual definition of classes, images following a specific distribution, annotation protocols, etc. In this paper we explore the automatic discovery of visual-semantic relations between labels across datasets. We aim to understand how instances of a certain class in a dataset relate to the instances of another class in another dataset. Are they in an identity, parent/child, overlap relation? Or is there no link between them at all? To find relations between labels across datasets, we propose methods based on language, on vision, and on their combination. We show that we can effectively discover label relations across datasets, as well as their type. We apply our method to four applications: understand label relations, identify missing aspects, increase label specificity, and predict transfer learning gains. We conclude that label relations cannot be established by looking at the names of classes alone, as they depend strongly on how each of the datasets was constructed.

J. Uijlings and T. Mensink—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An instance is either a single object (for thing classes, e.g. cat, car), or the union of all regions of a stuff class (e.g. grass, water), following the panoptic definition [13].

  2. 2.

    Available at: https://github.com/google-research/google-research/tree/master/missing_link.

References

  1. Robust vision challenge. http://www.robustvision.net/

  2. Bevandić, P., Oršić, M., Grubišić, I., Šarić, J., Šegvić, S.: Multi-domain semantic segmentation with overlapping labels. In: Proceedings of the WACV (2022)

    Google Scholar 

  3. Bucher, M., Vu, T., Cord, M., Pérez, P.: Zero-shot semantic segmentation. In: NeurIPS (2019)

    Google Scholar 

  4. Caesar, H., Uijlings, J., Ferrari, V.: COCO-stuff dataset (2018). http://calvin.inf.ed.ac.uk/datasets/coco-stuff

  5. Caesar, H., Uijlings, J., Ferrari, V.: COCO-stuff: thing and stuff classes in context. In: CVPR (2018)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  7. Everingham, M., Eslami, S., van Gool, L., Williams, C., Winn, J., Zisserman, A.: The Pascal visual object classes challenge: a retrospective. IJCV 111, 98–136 (2015). https://doi.org/10.1007/s11263-014-0733-5

    Article  Google Scholar 

  8. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  9. Ghiasi, G., Gu, X., Cui, Y., Lin, T.: Open-vocabulary image segmentation. Technical report, ArXiV (2021)

    Google Scholar 

  10. Google: Wiki words 500 with normalization - a 500 dimensional wor2vec skip-gram model trained on English Wikipedia. https://tfhub.dev/google/Wiki-words-500-with-normalization/2

  11. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: ICML (2021)

    Google Scholar 

  12. Kirillov, A.: Panoptic challenge intro. COCO+Mapillary Joint Recognition Challenge Workshop. http://presentations.cocodataset.org/ECCV18/COCO18-Panoptic-Overview.pdf

  13. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: CVPR (2019)

    Google Scholar 

  14. Kokkinos, I.: UberNet: training a ‘universal’ CNN for low-, mid-, and high-level vision using diverse datasets and limited memory. In: CVPR (2017)

    Google Scholar 

  15. Kuznetsova, A., et al.: The open images dataset V4: unified image classification, object detection, and visual relationship detection at scale. IJCV 128, 1956–1981 (2020). https://doi.org/10.1007/s11263-020-01316-z

    Article  Google Scholar 

  16. Lambert, J., Liu, Z., Sener, O., Hays, J., Koltun, V.: MSeg: a composite dataset for multi-domain semantic segmentation. In: CVPR (2020)

    Google Scholar 

  17. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  18. McInnes, L., Healy, J., Saul, N., Grossberger, L.: UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3(29), 861 (2018)

    Article  Google Scholar 

  19. Mensink, T., Uijlings, J., Kuznetsova, A., Gygli, M., Ferrari, V.: Factors of influence for transfer learning across diverse appearance domains and task types. IEEE Trans. PAMI (2021)

    Google Scholar 

  20. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR Workshop (2013)

    Google Scholar 

  21. Miller, G.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  22. Ponce, J., et al.: Dataset issues in object recognition. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 29–48. Springer, Heidelberg (2006). https://doi.org/10.1007/11957959_2

    Chapter  Google Scholar 

  23. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)

    Google Scholar 

  24. Rebuffi, S.A., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual adapters. In: NeurIPS (2017)

    Google Scholar 

  25. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  26. Torralba, A., Efros, A.: An unbiased look on dataset bias. In: CVPR (2011)

    Google Scholar 

  27. Triantafillou, E., et al.: Meta-dataset: a dataset of datasets for learning to learn from few examples. In: ICLR (2020)

    Google Scholar 

  28. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. PAMI 43(10), 3349–3364 (2020)

    Article  Google Scholar 

  29. Xiao, J., Hays, J., Ehinger, K., Oliva, A., Torralba, A.: SUN database: large-scale scene recognition from Abbey to Zoo. In: CVPR (2010)

    Google Scholar 

  30. Xiao, J., Owens, A., Torralba, A.: SUN3D: a database of big spaces reconstructed using SfM and object labels. In: ICCV (2013)

    Google Scholar 

  31. Yu, F., et al.: BDD100K: a diverse driving dataset for heterogeneous multitask learning. In: CVPR (2020)

    Google Scholar 

  32. Zendel, O., Honauer, K., Murschitz, M., Humenberger, M., Fernandez Dominguez, G.: Analyzing computer vision data - the good, the bad and the ugly. In: CVPR (2017)

    Google Scholar 

  33. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset. In: CVPR (2017)

    Google Scholar 

  34. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: NeurIPS (2014)

    Google Scholar 

  35. Zhou, X., Koltun, V., Krähenbühl, P.: Simple multi-dataset detection. In: CVPR (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasper Uijlings .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2095 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uijlings, J., Mensink, T., Ferrari, V. (2022). The Missing Link: Finding Label Relations Across Datasets. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20074-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20073-1

  • Online ISBN: 978-3-031-20074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics