Abstract
A profound understanding of inter-agent relationships and motion behaviors is important to achieve high-quality planning when navigating in complex scenarios, especially at urban traffic intersections. We present a trajectory prediction approach with respect to traffic lights, D2-TPred, which uses a spatial dynamic interaction graph (SDG) and a behavior dependency graph (BDG) to handle the problem of discontinuous dependency in the spatial-temporal space. Specifically, the SDG is used to capture spatial interactions by reconstructing sub-graphs for different agents with dynamic and changeable characteristics during each frame. The BDG is used to infer motion tendency by modeling the implicit dependency of the current state on priors behaviors, especially the discontinuous motions corresponding to acceleration, deceleration, or turning direction. Moreover, we present a new dataset for vehicle trajectory prediction under traffic lights called VTP-TL. Our experimental results show that our model achieves more than 20.45% and 20.78% improvement in terms of ADE and FDE, respectively, on VTP-TL as compared to other trajectory prediction algorithms. The dataset and code are available at: https://github.com/VTP-TL/D2-TPred.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrim, G., Justin, J., Li, F.F., Silvio, S.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2255–2264 (2018)
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 961–971 (2016). https://doi.org/10.1109/CVPR.2016.110
Angelos, M., Rohan, C., Dinesh, M.: B-GAP: behavior-guided action prediction for autonomous navigation. arXiv preprint arXiv:2011.03748 (2020)
Bai, H., Cai, S., Ye, N., Hsu, D., Lee, W.S.: Intention-aware online POMDP planning for autonomous driving in a crowd. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 454–460 (2015)
Bock, J., Krajewski, R., Moers, T., Runde, S., Vater, L., Eckstein, L.: The inD dataset: a drone dataset of naturalistic road user trajectories at German intersections. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1929–1934 (2019). https://doi.org/10.1109/IV47402.2020.9304839
Chandra, R., Bhattacharya, U., Bera, A., Manocha, D.: TraPHic: trajectory prediction in dense and heterogeneous traffic using weighted interactions. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8475–8484 (2019). https://doi.org/10.1109/CVPR.2019.00868
Chandra, R., Bhattacharya, U., Mittal, T., Bera, A., Manocha, D.: CMetric: a driving behavior measure using centrality functions. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2035–2042 (2020)
Chandra, R., et al.: Forecasting trajectory and behavior of road-agents using spectral clustering in graph-LSTMs. IEEE Robot. Autom. Lett. 5(3), 4882–4890 (2020)
Chang, M.F., et al.: Argoverse: 3D tracking and forecasting with rich maps. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8748–8757 (2019)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3213–3223 (2016)
Dendorfer, P., Oep, A., Laura, L.T.: Goal-GAN: multimodal trajectory prediction based on goal position estimation. In: Computer Vision - ACCV 2020 (2021)
Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory prediction. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1468–1476 (2018)
Dirk, H., Peter, M.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)
Dzmitry, B., Kyunghyun, C., Yoshua, B.: Neural machine translation by jointly learning to align and translate. arXiv:1409.0473v7 (2014)
Fang, L., Jiang, Q., Shi, J., Zhou, B.: TPNet: trajectory proposal network for motion prediction. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6796–6805 (2020). https://doi.org/10.1109/CVPR42600.2020.00683
Girish, V., Anbumani, S., Anoop, N., Manmohan, C., Jawahar, C.V.: IDD: a dataset for exploring problems of autonomous navigation in unconstrained environments. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1743–1751 (2021)
Giuliari, F., Hasan, I., Cristani, M., Galasso, F.: Transformer networks for trajectory forecasting. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 10335–10342 (2020)
Hang, Z., Jiyang, G., Tian, L., Chen, S., Benjamin, S., Balakrishnan, V.: TNT: target-driven trajectory prediction. arXiv:2008.08294v2 (2020)
Hasan, I., et al.: Forecasting people trajectories and head poses by jointly reasoning on tracklets and vislets. IEEE Trans. Pattern Anal. Mach. Intell. 43(4), 1267–1278 (2021)
Holger, C., Varun, K.R.B., Lang, A.H., Sourabh, V.: nuScenes: a multimodal dataset for autonomous driving. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11621–11631 (2020)
Houston, J., Zuidhof, G., Bergamini, L., Ye, Y., Ondruska, P.: One thousand and one hours: self-driving motion prediction dataset. In: Conference on Robot Learning (CoRL) (2020)
Hu, Y., Chen, S., Zhang, Y., Gu, X.: Collaborative motion prediction via neural motion message passing. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6318–6327 (2020)
Huang, Y., Bi, H., Li, Z., Mao, T., Wang, Z.: STGAT: modeling spatial-temporal interactions for human trajectory prediction. In: 2019 International Conference in Computer Vision, pp. 6272–6281 (2019)
Jiachen, L., Fan, Y., Tomizuka, M., Choi., C.: EvolveGraph: multi-agent trajectory prediction with dynamic relational reasoning. In: Proceedings of the Neural Information Processing Systems (NeurIPS), pp. 1–18 (2020)
Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H.S., Chandraker, M.: DESIRE: distant future prediction in dynamic scenes with interacting agents. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2165–2174 (2017). https://doi.org/10.1109/CVPR.2017.233
Liang, J., Jiang, L., Hauptmann, A.: SimAug: learning robust representations from 3D simulation for pedestrian trajectory prediction in unseen cameras 2. arXiv preprint arXiv:2004.02022 (2020)
Luo, Y., Cai, P., Bera, A., Hsu, D., Lee, W.S., Manocha, D.: PORCA: modeling and planning for autonomous driving among many pedestrians. IEEE Robot. Autom. Lett. 3(4), 3418–3425 (2018)
Mo, X., Huang, Z., Xing, Y., Lv, C.: Multi-agent trajectory prediction with heterogeneous edge-enhanced graph attention network. IEEE Trans. Intell. Transp. Syst. 1–14 (2022). https://doi.org/10.1109/TITS.2022.3146300
Mohamed, A., Qian, K., Elhoseiny, M., Claudel, C.: Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction. In: 2020 IEEE Conference on Computer Vision and Pattern Recognition, pp. 14424–14432 (2020)
Pang, B., Zhao, T., Xie, X., Wu, Y.N.: Trajectory prediction with latent belief energy-based model. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11814–11824, June 2021
Petar, V., Guillem, C., Arantxa, C., Adriana, R.: Graph attention networks. In: International Conference on Learning Representations (ICLR) (2018)
Pongsathorn, R., Takahiro, H., Masao, N.: Motion planning and control of autonomous driving intelligence system based on risk potential optimization framework. Int. J. Autom. Eng. 7(1), 53–60 (2016)
Ramin, M., Alexis, O., Mubarak, S.: Abnormal crowd behavior detection using social force model. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 935–942 (2009)
Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: human trajectory understanding in crowded scenes. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_33
Rohan, C., et al.: METEOR: a massive dense & heterogeneous behavior dataset for autonomous driving. arXiv preprint arXiv:2109.07648 (2021)
Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S.: SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1349–1358 (2020)
Scott, E., et al.: Large scale interactive motion forecasting for autonomous driving: the waymo open motion dataset. arXiv preprint arXiv:2104.10133 (2021)
Shi, L., et al.: SGCN: sparse graph convolution network for pedestrian trajectory prediction. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Song, X., et al.: Pedestrian trajectory prediction based on deep convolutional LSTM network. IEEE Trans. Intell. Transp. Syst. 22(6), 3285–3302 (2021)
Song, Y., Bisagno, N., Hassan, S.Z., Conci, N.: AG-GAN: an attentive group-aware GAN for pedestrian trajectory prediction. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 8703–8710 (2021)
Tim, S., Boris, I., Punarjay, C., Marco, P.: Trajectron++: multi-agent generative trajectory forecasting with heterogeneous data for control. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 683–700 (2020)
Vemula, A., Muelling, K., Oh, J.: Social attention: modeling attention in human crowds, pp. 1–7 (2018)
Vineet, K., Amir, S., Roberto, M.M., Lan, R.: Social-BiGAT: multimodal trajectory forecasting using bicycle-GAN and graph attention networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 137–146 (2019)
University of Waterloo: uwaterloo (2021). http://wiselab.uwaterloo.ca/waterloo-multi-agent-traffic-dataset/
Wei, Z., et al.: Interaction dataset: an international, adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps. arXiv preprint arXiv:1910.03088 (2019)
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2019)
Xin, L., Xiaowen, Y., Chuah, M.C.: GRIP++: enhanced graph-based interaction-aware trajectory prediction for autonomous driving. arXiv preprint arXiv:1907.07792 (2020)
Xu, Y., Ren, D., Li, M., Chen, Y., Fan, M., Xia, H.: Tra2Tra: trajectory-to-trajectory prediction with a global social spatial-temporal attentive neural network. IEEE Robot. Autom. Lett. 6(2), 1574–1581 (2021)
Yuexin, M., Dinesh, M., Wenping, W.: AutoRVO: local navigation with dynamic constraints in dense heterogeneous traffic. arXiv preprint arXiv:1804.02915 (2018)
Yuexin, M., Xinge, Z., Sibo, Z., Ruigang, Y., Wenping, W., Dinesh, M.: TrafficPredict: trajectory prediction for heterogeneous traffic-agents. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 6120–6127 (2019)
Yuning, C., Benjamin, S., Mayank, B., Dragomir, A.: MultiPath: multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv:1910.05449 (2019)
Zernetsch, S., Kohnen, S., Goldhammer, M., Doll, K., Sick, B.: Trajectory prediction of cyclists using a physical model and an artificial neural network. In: 2016 IEEE Intelligent Vehicles Symposium (IV), pp. 833–838 (2016)
Zhang, K., Zhao, L., Dong, C., Wu, L., Zheng, L.: AI-TP: attention-based interaction-aware trajectory prediction for autonomous driving. IEEE Trans. Intell. Veh. 1 (2022). https://doi.org/10.1109/TIV.2022.3155236
Zhao, L., et al.: T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21(9), 3848–3858 (2019)
Zhao, Z., Liu, C.: STUGCN: a social spatio-temporal unifying graph convolutional network for trajectory prediction. In: 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE), pp. 546–550 (2021)
Zheng, F., et al.: Unlimited neighborhood interaction for heterogeneous trajectory prediction. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 13148–13157 (2021). https://doi.org/10.1109/ICCV48922.2021.01292
Zhengping, C., et al.: D\(^2\)-City: a large-scale dashcam video dataset of diverse traffic scenarios. arXiv preprint arXiv:1904.01975 (2019)
Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020). https://doi.org/10.1016/j.aiopen.2021.01.001
Acknowledgments
This work was supported in part by the National Natural Science Foundation of China with Grant No. 61772474 and 62036010, Zhengzhou Major Science and Technology Project with Grant No. 2021KJZX0060-6. We thank all the reviewers for their valuable suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y. et al. (2022). D2-TPred: Discontinuous Dependency for Trajectory Prediction Under Traffic Lights. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-20074-8_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20073-1
Online ISBN: 978-3-031-20074-8
eBook Packages: Computer ScienceComputer Science (R0)