Skip to main content

MOTCOM: The Multi-Object Tracking Dataset Complexity Metric

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

There exists no comprehensive metric for describing the complexity of Multi-Object Tracking (MOT) sequences. This lack of metrics decreases explainability, complicates comparison of datasets, and reduces the conversation on tracker performance to a matter of leader board position. As a remedy, we present the novel MOT dataset complexity metric (MOTCOM), which is a combination of three sub-metrics inspired by key problems in MOT: occlusion, erratic motion, and visual similarity. The insights of MOTCOM can open nuanced discussions on tracker performance and may lead to a wider acknowledgement of novel contributions developed for either less known datasets or those aimed at solving sub-problems.

We evaluate MOTCOM on the comprehensive MOT17, MOT20, and MOTSynth datasets and show that MOTCOM is far better at describing the complexity of MOT sequences compared to the conventional density and number of tracks. Project page at https://vap.aau.dk/motcom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    With permission from the MOTChallenge benchmark authors.

  2. 2.

    Leader board results obtained on March 4, 2022.

References

  1. Andriyenko, A., Roth, S., Schindler, K.: An analytical formulation of global occlusion reasoning for multi-target tracking. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1839–1846. IEEE (2011). https://doi.org/10.1109/ICCVW.2011.6130472

  2. Andriyenko, A., Schindler, K.: Multi-target tracking by continuous energy minimization. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1265–1272 (2011). https://doi.org/10.1109/CVPR.2011.5995311

  3. Bergmann, P., Meinhardt, T., Leal-Taixé, L.: Tracking without bells and whistles. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 941–951 (2019). https://doi.org/10.1109/ICCV.2019.00103

  4. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468 (2016). https://doi.org/10.1109/ICIP.2016.7533003

  5. Branchaud-Charron, F., Achkar, A., Jodoin, P.M.: Spectral metric for dataset complexity assessment. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3210–3219 (2019). https://doi.org/10.1109/CVPR.2019.00333

  6. Cao, X., Guo, S., Lin, J., Zhang, W., Liao, M.: Online tracking of ants based on deep association metrics: method, dataset and evaluation. Pattern Recogn. 103 (2020). https://doi.org/10.1016/j.patcog.2020.107233

  7. Chang, M.F., et al.: Argoverse: 3D tracking and forecasting with rich maps. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8740–8749 (2019). https://doi.org/10.1109/CVPR.2019.00895

  8. Cui, Y., Gu, Z., Mahajan, D., van der Maaten, L., Belongie, S., Lim, S.N.: Measuring dataset granularity (2019). https://doi.org/10.48550/ARXIV.1912.10154

  9. Dendorfer, P., et al.: MOTChallenge: a benchmark for single-camera multiple target tracking. Int. J. Comput. Vision 129(4), 845–881 (2020). https://doi.org/10.1007/s11263-020-01393-0

    Article  Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  11. Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(2), 262–268 (1977). https://doi.org/10.1111/j.2517-6161.1977.tb01624.x

    Article  MathSciNet  MATH  Google Scholar 

  12. Fabbri, M., et al.: Motsynth: how can synthetic data help pedestrian detection and tracking? In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10829–10839 (2021). https://doi.org/10.1109/ICCV48922.2021.01067

  13. Gade, R., Moeslund, T.B.: Constrained multi-target tracking for team sports activities. IPSJ Trans. Comput. Vision Appl. 10(1), 1–11 (2018). https://doi.org/10.1186/s41074-017-0038-z

    Article  Google Scholar 

  14. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361 (2012). https://doi.org/10.1109/CVPR.2012.6248074

  15. Haurum, J.B., Karpova, A., Pedersen, M., Bengtson, S.H., Moeslund, T.B.: Re-identification of zebrafish using metric learning. In: 2020 IEEE Winter Applications of Computer Vision Workshops (WACVW), pp. 1–11 (2020). https://doi.org/10.1109/WACVW50321.2020.9096922

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  17. Ho, T.K., Basu, M.: Complexity measures of supervised classification problems. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 24(3), 289–300 (2002). https://doi.org/10.1109/34.990132

    Article  Google Scholar 

  18. Khan, S.D., Ullah, H.: A survey of advances in vision-based vehicle re-identification. Comput. Vis. Image Underst. 182, 50–63 (2019). https://doi.org/10.1016/j.cviu.2019.03.001

    Article  Google Scholar 

  19. Kratz, L., Nishino, K.: Tracking with local spatio-temporal motion patterns in extremely crowded scenes. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 693–700 (2010). https://doi.org/10.1109/CVPR.2010.5540149

  20. Leal-Taixé, L., Milan, A., Schindler, K., Cremers, D., Reid, I., Roth, S.: Tracking the trackers: an analysis of the state of the art in multiple object tracking. arXiv (2017). https://doi.org/10.48550/ARXIV.1704.02781

  21. Leal-Taixé, L., Canton-Ferrer, C., Schindler, K.: Learning by tracking: Siamese cnn for robust target association. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 418–425 (2016). https://doi.org/10.1109/CVPRW.2016.59

  22. Liu, C., Yao, R., Rezatofighi, S.H., Reid, I., Shi, Q.: Model-free tracker for multiple objects using joint appearance and motion inference. IEEE Trans. Image Process. 29, 277–288 (2020). https://doi.org/10.1109/TIP.2019.2928123

    Article  MathSciNet  MATH  Google Scholar 

  23. Lu, Z., Rathod, V., Votel, R., Huang, J.: Retinatrack: online single stage joint detection and tracking. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14656–14666 (2020). https://doi.org/10.1109/CVPR42600.2020.01468

  24. Luiten, J., Osep, A., Dendorfer, P., Torr, P., Geiger, A., Leal-Taixé, L., Leibe, B.: Hota: a higher order metric for evaluating multi-object tracking. International Journal of Computer Vision (IJCV), pp. 548–578 (2021). https://doi.org/10.1007/s11263-020-01375-2

  25. Luo, W., Kim, T.K., Stenger, B., Zhao, X., Cipolla, R.: Bi-label propagation for generic multiple object tracking. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1290–1297 (2014). https://doi.org/10.1109/CVPR.2014.168

  26. Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., Kim, T.K.: Multiple object tracking: a literature review. Artif. Intell. 293, 103448 (2021). https://doi.org/10.1016/j.artint.2020.103448

    Article  MathSciNet  MATH  Google Scholar 

  27. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: Mot16: a benchmark for multi-object tracking. arXiv (2016).https://doi.org/10.48550/ARXIV.1603.00831

  28. Milan, A., Roth, S., Schindler, K.: Continuous energy minimization for multitarget tracking. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 36(1), 58–72 (2014). https://doi.org/10.1109/TPAMI.2013.103

    Article  Google Scholar 

  29. Milan, A., Schindler, K., Roth, S.: Challenges of ground truth evaluation of multi-target tracking. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 735–742 (2013). https://doi.org/10.1109/CVPRW.2013.111

  30. Pang, J., et al.: Quasi-dense similarity learning for multiple object tracking. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 164–173 (2021). https://doi.org/10.1109/CVPR46437.2021.00023

  31. Pedersen, M., Haurum, J.B., Hein Bengtson, S., Moeslund, T.B.: 3D-ZEF: a 3D zebrafish tracking benchmark dataset. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 2423–2433 (2020). https://doi.org/10.1109/CVPR42600.2020.00250

  32. Pellegrini, S., Ess, A., Schindler, K., van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: 2009 IEEE 12th International Conference on Computer Vision (ICCV), pp. 261–268 (2009). https://doi.org/10.1109/ICCV.2009.5459260

  33. Peng, J., et al.: Chained-tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 145–161. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_9

    Chapter  Google Scholar 

  34. Pérez-Escudero, A., Vicente-Page, J., Hinz, R.C., Arganda, S., De Polavieja, G.G.: idtracker: tracking individuals in a group by automatic identification of unmarked animals. Nat. Methods 11(7), 743–748 (2014). https://doi.org/10.1038/nmeth.2994

    Article  Google Scholar 

  35. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_2

    Chapter  Google Scholar 

  36. Schneider, S., Taylor, G.W., Kremer, S.C.: Similarity learning networks for animal individual re-identification - beyond the capabilities of a human observer. In: 2020 IEEE Winter Applications of Computer Vision Workshops (WACVW), pp. 44–52 (2020). https://doi.org/10.1109/WACVW50321.2020.9096925

  37. Schneider, S., Taylor, G.W., Linquist, S., Kremer, S.C.: Past, present and future approaches using computer vision for animal re-identification from camera trap data. Methods Ecol. Evol. 10(4), 461–470 (2019). https://doi.org/10.1111/2041-210X.13133

    Article  Google Scholar 

  38. Stadler, D., Beyerer, J.: Improving multiple pedestrian tracking by track management and occlusion handling. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10953–10962 (2021). https://doi.org/10.1109/CVPR46437.2021.01081

  39. Stiefelhagen, R., Bernardin, K., Bowers, R., Garofolo, J., Mostefa, D., Soundararajan, P.: The CLEAR 2006 evaluation. In: Stiefelhagen, R., Garofolo, J. (eds.) CLEAR 2006. LNCS, vol. 4122, pp. 1–44. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69568-4_1

    Chapter  Google Scholar 

  40. Sun, P., et al.: Scalability in perception for autonomous driving: waymo open dataset. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2443–2451 (2020). https://doi.org/10.1109/CVPR42600.2020.00252

  41. Uhlmann, J.K.: Algorithms for multiple-target tracking. Am. Sci. 80(2), 128–141 (1992)

    Google Scholar 

  42. Voigtlaender, P., et al.: Mots: multi-object tracking and segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7934–7943 (2019). https://doi.org/10.1109/CVPR.2019.00813

  43. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645–3649 (2017). https://doi.org/10.1109/ICIP.2017.8296962

  44. Xiang, Y., Alahi, A., Savarese, S.: Learning to track: online multi-object tracking by decision making. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4705–4713 (2015). https://doi.org/10.1109/ICCV.2015.534

  45. Xu, J., Cao, Y., Zhang, Z., Hu, H.: Spatial-temporal relation networks for multi-object tracking. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3987–3997 (2019). https://doi.org/10.1109/ICCV.2019.00409

  46. Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., Hoi, S.C.H.: Deep learning for person re-identification: a survey and outlook. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 44(6), 2872–2893 (2022). https://doi.org/10.1109/TPAMI.2021.3054775

    Article  Google Scholar 

  47. Yin, J., Wang, W., Meng, Q., Yang, R., Shen, J.: A unified object motion and affinity model for online multi-object tracking. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6767–6776 (2020). https://doi.org/10.1109/CVPR42600.2020.00680

  48. Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMOT: on the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vision 129(11), 3069–3087 (2021). https://doi.org/10.1007/s11263-021-01513-4

    Article  Google Scholar 

  49. Zhou, X., Koltun, V., Krähenbühl, P.: Tracking objects as points. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 474–490. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_28

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Independent Research Fund Denmark under case number 9131-00128B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Pedersen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 882 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pedersen, M., Haurum, J.B., Dendorfer, P., Moeslund, T.B. (2022). MOTCOM: The Multi-Object Tracking Dataset Complexity Metric. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20074-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20073-1

  • Online ISBN: 978-3-031-20074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics