Skip to main content

Large Scale Real-World Multi-person Tracking

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

This paper presents a new large scale multi-person tracking dataset. Our dataset is over an order of magnitude larger than currently available high quality multi-object tracking datasets such as MOT17, HiEve, and MOT20 datasets. The lack of large scale training and test data for this task has limited the community’s ability to understand the performance of their tracking systems on a wide range of scenarios and conditions such as variations in person density, actions being performed, weather, and time of day. Our dataset was specifically sourced to provide a wide variety of these conditions and our annotations include rich meta-data such that the performance of a tracker can be evaluated along these different dimensions. The lack of training data has also limited the ability to perform end-to-end training of tracking systems. As such, the highest performing tracking systems all rely on strong detectors trained on external image datasets. We hope that the release of this dataset will enable new lines of research that take advantage of large scale video based training data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://docs.aws.amazon.com/sagemaker/latest/dg/sms-video-object-tracking.html.

  2. 2.

    We encourage the researchers report detection AP@0.5 of their tracking models on our dataset.

References

  1. Fillerstock. http://fillerstock.com/

  2. Pexels. http://www.pexels.com/

  3. Pixabay. http://pixabay.com/

  4. Bai, H., Cheng, W., Chu, P., Liu, J., Zhang, K., Ling, H.: GMOT-40: a benchmark for generic multiple object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6719–6728 (2021)

    Google Scholar 

  5. Beddiar, D.R., Nini, B., Sabokrou, M., Hadid, A.: Vision-based human activity recognition: a survey. Multimed. Tools Appl. 79(41), 30509–30555 (2020). https://doi.org/10.1007/s11042-020-09004-3

    Article  Google Scholar 

  6. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J. Image Video Process. 2008 (2008). https://doi.org/10.1155/2008/246309

  7. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  8. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468. IEEE (2016)

    Google Scholar 

  9. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)

    Google Scholar 

  10. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  11. Carreira, J., Noland, E., Hillier, C., Zisserman, A.: A short note on the Kinetics-700 human action dataset. arXiv preprint arXiv:1907.06987 (2019)

  12. Chandrajit, M., Girisha, R., Vasudev, T.: Multiple objects tracking in surveillance video using color and hu moments. Sig. Image Process. Int. J. (SIPIJ) 7(3), 16–27 (2016)

    Google Scholar 

  13. Chandrakar, R., Raja, R., Miri, R., Sinha, U., Kushwaha, A.K.S., Raja, H.: Enhanced the moving object detection and object tracking for traffic surveillance using RBF-FDLNN and CBF algorithm. Expert Syst. Appl. 191, 116306 (2022)

    Article  Google Scholar 

  14. Chang, M.F., et al.: Argoverse: 3D tracking and forecasting with rich maps. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8748–8757 (2019)

    Google Scholar 

  15. Chang, S., et al.: Towards accurate human pose estimation in videos of crowded scenes. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 4630–4634 (2020)

    Google Scholar 

  16. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  17. Corona, K., Osterdahl, K., Collins, R., Hoogs, A.: MEVA: a large-scale multiview, multimodal video dataset for activity detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1060–1068, January 2021

    Google Scholar 

  18. Datta, A., Shah, M., Lobo, N.D.V.: Person-on-person violence detection in video data. In: Object Recognition Supported by User Interaction for Service Robots, vol. 1, pp. 433–438. IEEE (2002)

    Google Scholar 

  19. Dave, A., Khurana, T., Tokmakov, P., Schmid, C., Ramanan, D.: TAO: a large-scale benchmark for tracking any object. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 436–454. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_26

    Chapter  Google Scholar 

  20. Dendorfer, P., et al.: MOT20: a benchmark for multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003 (2020)

  21. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)

    Google Scholar 

  22. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 304–311. IEEE (2009)

    Google Scholar 

  23. Ess, A., Schindler, K., Leibe, B., Van Gool, L.: Object detection and tracking for autonomous navigation in dynamic environments. Int. J. Robot. Res. 29(14), 1707–1725 (2010)

    Article  Google Scholar 

  24. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  25. Fabbri, M., et al.: MOTSynth: how can synthetic data help pedestrian detection and tracking? In: International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  26. Fabbri, M., Lanzi, F., Calderara, S., Palazzi, A., Vezzani, R., Cucchiara, R.: Learning to detect and track visible and occluded body joints in a virtual world. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 450–466. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_27

    Chapter  Google Scholar 

  27. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  28. Guo, D., Wang, J., Cui, Y., Wang, Z., Chen, S.: SiamCAR: siamese fully convolutional classification and regression for visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6269–6277 (2020)

    Google Scholar 

  29. Han, X., et al.: MMPTRACK: large-scale densely annotated multi-camera multiple people tracking benchmark (2021)

    Google Scholar 

  30. Held, D., Thrun, S., Savarese, S.: Learning to track at 100 FPS with deep regression networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 749–765. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_45

    Chapter  Google Scholar 

  31. Houston, J., et al.: One thousand and one hours: self-driving motion prediction dataset. arXiv preprint arXiv:2006.14480 (2020)

  32. Leal-Taixé, L., Canton-Ferrer, C., Schindler, K.: Learning by tracking: siamese CNN for robust target association. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 33–40 (2016)

    Google Scholar 

  33. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of siamese visual tracking with very deep networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4282–4291 (2019)

    Google Scholar 

  34. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  35. Lin, W., et al.: Human in events: a large-scale benchmark for human-centric video analysis in complex events. arXiv preprint arXiv:2005.04490 (2020)

  36. Liu, W., Bao, Q., Sun, Y., Mei, T.: Recent advances in monocular 2D and 3D human pose estimation: a deep learning perspective. arXiv preprint arXiv:2104.11536 (2021)

  37. Manen, S., Gygli, M., Dai, D., Gool, L.V.: PathTrack: fast trajectory annotation with path supervision. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 290–299 (2017)

    Google Scholar 

  38. Mathur, G., Somwanshi, D., Bundele, M.M.: Intelligent video surveillance based on object tracking. In: 2018 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE), pp. 1–6. IEEE (2018)

    Google Scholar 

  39. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: MOT16: a benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831 (2016)

  40. Oh, S., et al.: A large-scale benchmark dataset for event recognition in surveillance video. In: CVPR 2011, pp. 3153–3160. IEEE (2011)

    Google Scholar 

  41. Pang, B., Li, Y., Zhang, Y., Li, M., Lu, C.: TubeTK: adopting tubes to track multi-object in a one-step training model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6308–6318 (2020)

    Google Scholar 

  42. Pang, J., et al.: Quasi-dense similarity learning for multiple object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 164–173 (2021)

    Google Scholar 

  43. Rangesh, A., Trivedi, M.M.: No blind spots: full-surround multi-object tracking for autonomous vehicles using cameras and lidars. IEEE Trans. Intell. Veh. 4(4), 588–599 (2019)

    Article  Google Scholar 

  44. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  45. Rezaei, M., Azarmi, M., Mir, F.M.P.: Traffic-Net: 3D traffic monitoring using a single camera. arXiv preprint arXiv:2109.09165 (2021)

  46. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_2

    Chapter  Google Scholar 

  47. Ristani, E., Tomasi, C.: Features for multi-target multi-camera tracking and re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6036–6046 (2018)

    Google Scholar 

  48. Shao, S., et al.: CrowdHuman: a benchmark for detecting human in a crowd. arXiv preprint arXiv:1805.00123 (2018)

  49. Shuai, B., Li, X., Kundu, K., Tighe, J.: Id-free person similarity learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  50. Shuai, B., Berneshawi, A., Li, X., Modolo, D., Tighe, J.: SiamMOT: siamese multi-object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12372–12382 (2021)

    Google Scholar 

  51. Song, L., Yu, G., Yuan, J., Liu, Z.: Human pose estimation and its application to action recognition: a survey. J. Vis. Commun. Image Represent. 76, 103055 (2021)

    Article  Google Scholar 

  52. Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2446–2454 (2020)

    Google Scholar 

  53. Sundararaman, R., De Almeida Braga, C., Marchand, E., Pettre, J.: Tracking pedestrian heads in dense crowd. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3865–3875 (2021)

    Google Scholar 

  54. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636 (2019)

    Google Scholar 

  55. Wang, G., Wang, Y., Zhang, H., Gu, R., Hwang, J.N.: Exploit the connectivity: multi-object tracking with trackletnet. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 482–490 (2019)

    Google Scholar 

  56. Wang, Z., Zheng, L., Liu, Y., Li, Y., Wang, S.: Towards real-time multi-object tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 107–122. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_7

    Chapter  Google Scholar 

  57. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645–3649. IEEE (2017)

    Google Scholar 

  58. Wu, J., Osuntogun, A., Choudhury, T., Philipose, M., Rehg, J.M.: A scalable approach to activity recognition based on object use. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)

    Google Scholar 

  59. Xu, J., Cao, Y., Zhang, Z., Hu, H.: Spatial-temporal relation networks for multi-object tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3988–3998 (2019)

    Google Scholar 

  60. Xu, Y., Osep, A., Ban, Y., Horaud, R., Leal-Taixé, L., Alameda-Pineda, X.: How to train your deep multi-object tracker. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6787–6796 (2020)

    Google Scholar 

  61. Gan, Y., Han, R., Yin, L., Feng, W., Wang, S.: Self-supervised multi-view multi-human association and tracking. In: ACM MM (2021)

    Google Scholar 

  62. Yu, F., et al.: BDD100K: a diverse driving dataset for heterogeneous multitask learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2636–2645 (2020)

    Google Scholar 

  63. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)

  64. Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412 (2018)

    Google Scholar 

  65. Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMOT: on the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vis. 129(11), 3069–3087 (2021). https://doi.org/10.1007/s11263-021-01513-4

    Article  Google Scholar 

  66. Zhou, X., Koltun, V., Krähenbühl, P.: Tracking objects as points. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 474–490. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_28

    Chapter  Google Scholar 

  67. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Shuai .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2637 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shuai, B., Bergamo, A., Büchler, U., Berneshawi, A., Boden, A., Tighe, J. (2022). Large Scale Real-World Multi-person Tracking. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20074-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20073-1

  • Online ISBN: 978-3-031-20074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics