Abstract
Image-based virtual try-on strives to transfer the appearance of a clothing item onto the image of a target person. Prior work focuses mainly on upper-body clothes (e.g. t-shirts, shirts, and tops) and neglects full-body or lower-body items. This shortcoming arises from a main factor: current publicly available datasets for image-based virtual try-on do not account for this variety, thus limiting progress in the field. To address this deficiency, we introduce Dress Code, which contains images of multi-category clothes. Dress Code is more than \(3\times \) larger than publicly available datasets for image-based virtual try-on and features high-resolution paired images (\(1024 \times 768\)) with front-view, full-body reference models. To generate HD try-on images with high visual quality and rich in details, we propose to learn fine-grained discriminating features. Specifically, we leverage a semantic-aware discriminator that makes predictions at pixel-level instead of image- or patch-level. Extensive experimental evaluation demonstrates that the proposed approach surpasses the baselines and state-of-the-art competitors in terms of visual quality and quantitative results. The Dress Code dataset is publicly available at https://github.com/aimagelab/dress-code.
F. Landi—Now at Huawei Technologies, Amsterdam Research Center, the Netherlands.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD GANs. In: ICLR (2018)
Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation using part affinity fields. In: CVPR (2017)
Chen, C.Y., Lo, L., Huang, P.J., Shuai, H.H., Cheng, W.H.: FashionMirror: co-attention feature-remapping virtual try-on with sequential template poses. In: ICCV (2021)
Choi, S., Park, S., Lee, M., Choo, J.: VITON-HD: high-resolution virtual try-on via misalignment-aware normalization. In: ICCV (2021)
Cui, A., McKee, D., Lazebnik, S.: Dressing in order: recurrent person image generation for pose transfer. In: ICCV, Virtual Try-On and Outfit Editing (2021)
Dong, H., et al.: Towards multi-pose guided virtual try-on network. In: ICCV (2019)
Fenocchi, E., Morelli, D., Cornia, M., Baraldi, L., Cesari, F., Cucchiara, R.: Dual-branch collaborative transformer for virtual try-on. In: CVPR Workshops (2022)
Fincato, M., Landi, F., Cornia, M., Fabio, C., Cucchiara, R.: VITON-GT: an image-based virtual try-on model with geometric transformations. In: ICPR (2020)
Ge, C., Song, Y., Ge, Y., Yang, H., Liu, W., Luo, P.: Disentangled cycle consistency for highly-realistic virtual try-on. In: CVPR (2021)
Ge, Y., Song, Y., Zhang, R., Ge, C., Liu, W., Luo, P.: Parser-free virtual try-on via distilling appearance flows. In: CVPR (2021)
Güler, R.A., Neverova, N., Kokkinos, I.: DensePose: dense human pose estimation in the wild. In: CVPR (2018)
Han, X., Hu, X., Huang, W., Scott, M.R.: ClothFlow: a flow-based model for clothed person generation. In: ICCV (2019)
Han, X., Wu, Z., Wu, Z., Yu, R., Davis, L.S.: VITON: an image-based virtual try-on network. In: CVPR (2018)
He, S., Song, Y.Z., Xiang, T.: Style-based global appearance flow for virtual try-on. In: CVPR (2022)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a Nash equilibrium. In: NeurIPS (2017)
Hsieh, C.W., Chen, C.Y., Chou, C.L., Shuai, H.H., Liu, J., Cheng, W.H.: FashionOn: semantic-guided image-based virtual try-on with detailed human and clothing information. In: ACM Multimedia (2019)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-To-Image translation with conditional adversarial networks. In: CVPR (2017)
Issenhuth, T., Mary, J., Calauzènes, C.: Do not mask what you do not need to mask: a parser-free virtual try-on. In: ECCV (2020)
Jae Lee, H., Lee, R., Kang, M., Cho, M., Park, G.: LA-VITON: a network for looking-attractive virtual try-on. In: ICCV Workshops (2019)
Jandial, S., Chopra, A., Ayush, K., Hemani, M., Krishnamurthy, B., Halwai, A.: SieveNet: a unified framework for robust image-based virtual try-on. In: WACV (2020)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: ECCV (2016)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Lewis, K.M., Varadharajan, S., Kemelmacher-Shlizerman, I.: TryOnGAN: body-aware try-on via layered interpolation. ACM Trans. Graphic. 40(4), 1–10 (2021)
Li, K., Chong, M.J., Zhang, J., Liu, J.: Toward accurate and realistic outfits visualization with attention to details. In: CVPR (2021)
Li, P., Xu, Y., Wei, Y., Yang, Y.: Self-correction for human parsing. IEEE Trans. PAMI 44(6), 3260–3271 (2022)
Liu, X., Yin, G., Shao, J., Wang, X., Li, H.: Learning to predict layout-to-image conditional convolutions for semantic image synthesis. In: NeurIPS (2019)
Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: CVPR (2016)
Minar, M.R., Tuan, T.T., Ahn, H., Rosin, P., Lai, Y.K.: CP-VTON+: clothing shape and texture preserving image-based virtual try-on. In: CVPR Workshops (2020)
Mir, A., Alldieck, T., Pons-Moll, G.: Learning to transfer texture from clothing images to 3d humans. In: CVPR (2020)
Neuberger, A., Borenstein, E., Hilleli, B., Oks, E., Alpert, S.: Image based virtual try-on network from unpaired data. In: CVPR (2020)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)
Ren, B., et a;.: Cloth interactive transformer for virtual try-on. arXiv preprint arXiv:2104.05519 (2021)
Rocco, I., Arandjelovic, R., Sivic, J.: Convolutional neural network architecture for geometric matching. In: CVPR (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: MICCAI (2015)
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NeurIPS (2016)
Santesteban, I., Thuerey, N., Otaduy, M.A., Casas, D.: Self-supervised collision handling via generative 3d garment models for virtual try-on. In: CVPR (2021)
Schonfeld, E., Schiele, B., Khoreva, A.: A u-net based discriminator for generative adversarial network. In: CVPR (2020)
Schönfeld, E., Sushko, V., Zhang, D., Gall, J., Schiele, B., Khoreva, A.: You only need adversarial supervision for semantic image synthesis. In: ICLR (2021)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
Wang, B., Zheng, H., Liang, X., Chen, Y., Lin, L., Yang, M.: Toward characteristic-preserving image-based virtual try-on network. In: ECCV (2018)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR (2018)
Yang, H., Zhang, R., Guo, X., Liu, W., Zuo, W., Luo, P.: Towards photo-realistic virtual try-on by adaptively generating-preserving image content. In: CVPR (2020)
Yildirim, G., Jetchev, N., Vollgraf, R., Bergmann, U.: Generating high-resolution fashion model images wearing custom outfits. In: ICCV Workshops (2019)
Yoo, D., Kim, N., Park, S., Paek, A.S., Kweon, I.S.: Pixel-level domain transfer. In: ECCV (2016)
Yu, R., Wang, X., Xie, X.: VTNFP: an image-based virtual try-on network with body and clothing feature preservation. In: ICCV (2019)
Zhao, F., et al.: M3D-VTON: a monocular-to-3d virtual try-on network. In: ICCV (2021)
Zheng, N., Song, X., Chen, Z., Hu, L., Cao, D., Nie, L.: Virtually trying on new clothing with arbitrary poses. In: ACM Multimedia (2019)
Zhu, H., et al.: DeepFashion3D: a dataset and benchmark for 3d garment reconstruction from single images. In: ECCV (2020)
Acknowledgments
We thank CINECA, the Italian Supercomputing Center, for providing computational resources. This work has been supported by the PRIN project “CREATIVE: CRoss-modal understanding and gEnerATIon of Visual and tExtual content” (CUP B87G22000460001), co-funded by the Italian Ministry of University and Research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Morelli, D., Fincato, M., Cornia, M., Landi, F., Cesari, F., Cucchiara, R. (2022). Dress Code: High-Resolution Multi-category Virtual Try-On. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-20074-8_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20073-1
Online ISBN: 978-3-031-20074-8
eBook Packages: Computer ScienceComputer Science (R0)