Skip to main content

Dress Code: High-Resolution Multi-category Virtual Try-On

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Image-based virtual try-on strives to transfer the appearance of a clothing item onto the image of a target person. Prior work focuses mainly on upper-body clothes (e.g. t-shirts, shirts, and tops) and neglects full-body or lower-body items. This shortcoming arises from a main factor: current publicly available datasets for image-based virtual try-on do not account for this variety, thus limiting progress in the field. To address this deficiency, we introduce Dress Code, which contains images of multi-category clothes. Dress Code is more than \(3\times \) larger than publicly available datasets for image-based virtual try-on and features high-resolution paired images (\(1024 \times 768\)) with front-view, full-body reference models. To generate HD try-on images with high visual quality and rich in details, we propose to learn fine-grained discriminating features. Specifically, we leverage a semantic-aware discriminator that makes predictions at pixel-level instead of image- or patch-level. Extensive experimental evaluation demonstrates that the proposed approach surpasses the baselines and state-of-the-art competitors in terms of visual quality and quantitative results. The Dress Code dataset is publicly available at https://github.com/aimagelab/dress-code.

F. Landi—Now at Huawei Technologies, Amsterdam Research Center, the Netherlands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD GANs. In: ICLR (2018)

    Google Scholar 

  2. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation using part affinity fields. In: CVPR (2017)

    Google Scholar 

  3. Chen, C.Y., Lo, L., Huang, P.J., Shuai, H.H., Cheng, W.H.: FashionMirror: co-attention feature-remapping virtual try-on with sequential template poses. In: ICCV (2021)

    Google Scholar 

  4. Choi, S., Park, S., Lee, M., Choo, J.: VITON-HD: high-resolution virtual try-on via misalignment-aware normalization. In: ICCV (2021)

    Google Scholar 

  5. Cui, A., McKee, D., Lazebnik, S.: Dressing in order: recurrent person image generation for pose transfer. In: ICCV, Virtual Try-On and Outfit Editing (2021)

    Google Scholar 

  6. Dong, H., et al.: Towards multi-pose guided virtual try-on network. In: ICCV (2019)

    Google Scholar 

  7. Fenocchi, E., Morelli, D., Cornia, M., Baraldi, L., Cesari, F., Cucchiara, R.: Dual-branch collaborative transformer for virtual try-on. In: CVPR Workshops (2022)

    Google Scholar 

  8. Fincato, M., Landi, F., Cornia, M., Fabio, C., Cucchiara, R.: VITON-GT: an image-based virtual try-on model with geometric transformations. In: ICPR (2020)

    Google Scholar 

  9. Ge, C., Song, Y., Ge, Y., Yang, H., Liu, W., Luo, P.: Disentangled cycle consistency for highly-realistic virtual try-on. In: CVPR (2021)

    Google Scholar 

  10. Ge, Y., Song, Y., Zhang, R., Ge, C., Liu, W., Luo, P.: Parser-free virtual try-on via distilling appearance flows. In: CVPR (2021)

    Google Scholar 

  11. Güler, R.A., Neverova, N., Kokkinos, I.: DensePose: dense human pose estimation in the wild. In: CVPR (2018)

    Google Scholar 

  12. Han, X., Hu, X., Huang, W., Scott, M.R.: ClothFlow: a flow-based model for clothed person generation. In: ICCV (2019)

    Google Scholar 

  13. Han, X., Wu, Z., Wu, Z., Yu, R., Davis, L.S.: VITON: an image-based virtual try-on network. In: CVPR (2018)

    Google Scholar 

  14. He, S., Song, Y.Z., Xiang, T.: Style-based global appearance flow for virtual try-on. In: CVPR (2022)

    Google Scholar 

  15. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a Nash equilibrium. In: NeurIPS (2017)

    Google Scholar 

  16. Hsieh, C.W., Chen, C.Y., Chou, C.L., Shuai, H.H., Liu, J., Cheng, W.H.: FashionOn: semantic-guided image-based virtual try-on with detailed human and clothing information. In: ACM Multimedia (2019)

    Google Scholar 

  17. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-To-Image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  18. Issenhuth, T., Mary, J., Calauzènes, C.: Do not mask what you do not need to mask: a parser-free virtual try-on. In: ECCV (2020)

    Google Scholar 

  19. Jae Lee, H., Lee, R., Kang, M., Cho, M., Park, G.: LA-VITON: a network for looking-attractive virtual try-on. In: ICCV Workshops (2019)

    Google Scholar 

  20. Jandial, S., Chopra, A., Ayush, K., Hemani, M., Krishnamurthy, B., Halwai, A.: SieveNet: a unified framework for robust image-based virtual try-on. In: WACV (2020)

    Google Scholar 

  21. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: ECCV (2016)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  23. Lewis, K.M., Varadharajan, S., Kemelmacher-Shlizerman, I.: TryOnGAN: body-aware try-on via layered interpolation. ACM Trans. Graphic. 40(4), 1–10 (2021)

    Article  Google Scholar 

  24. Li, K., Chong, M.J., Zhang, J., Liu, J.: Toward accurate and realistic outfits visualization with attention to details. In: CVPR (2021)

    Google Scholar 

  25. Li, P., Xu, Y., Wei, Y., Yang, Y.: Self-correction for human parsing. IEEE Trans. PAMI 44(6), 3260–3271 (2022)

    Article  Google Scholar 

  26. Liu, X., Yin, G., Shao, J., Wang, X., Li, H.: Learning to predict layout-to-image conditional convolutions for semantic image synthesis. In: NeurIPS (2019)

    Google Scholar 

  27. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: CVPR (2016)

    Google Scholar 

  28. Minar, M.R., Tuan, T.T., Ahn, H., Rosin, P., Lai, Y.K.: CP-VTON+: clothing shape and texture preserving image-based virtual try-on. In: CVPR Workshops (2020)

    Google Scholar 

  29. Mir, A., Alldieck, T., Pons-Moll, G.: Learning to transfer texture from clothing images to 3d humans. In: CVPR (2020)

    Google Scholar 

  30. Neuberger, A., Borenstein, E., Hilleli, B., Oks, E., Alpert, S.: Image based virtual try-on network from unpaired data. In: CVPR (2020)

    Google Scholar 

  31. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)

    Google Scholar 

  32. Ren, B., et a;.: Cloth interactive transformer for virtual try-on. arXiv preprint arXiv:2104.05519 (2021)

  33. Rocco, I., Arandjelovic, R., Sivic, J.: Convolutional neural network architecture for geometric matching. In: CVPR (2017)

    Google Scholar 

  34. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: MICCAI (2015)

    Google Scholar 

  35. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NeurIPS (2016)

    Google Scholar 

  36. Santesteban, I., Thuerey, N., Otaduy, M.A., Casas, D.: Self-supervised collision handling via generative 3d garment models for virtual try-on. In: CVPR (2021)

    Google Scholar 

  37. Schonfeld, E., Schiele, B., Khoreva, A.: A u-net based discriminator for generative adversarial network. In: CVPR (2020)

    Google Scholar 

  38. Schönfeld, E., Sushko, V., Zhang, D., Gall, J., Schiele, B., Khoreva, A.: You only need adversarial supervision for semantic image synthesis. In: ICLR (2021)

    Google Scholar 

  39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  40. Wang, B., Zheng, H., Liang, X., Chen, Y., Lin, L., Yang, M.: Toward characteristic-preserving image-based virtual try-on network. In: ECCV (2018)

    Google Scholar 

  41. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR (2018)

    Google Scholar 

  42. Yang, H., Zhang, R., Guo, X., Liu, W., Zuo, W., Luo, P.: Towards photo-realistic virtual try-on by adaptively generating-preserving image content. In: CVPR (2020)

    Google Scholar 

  43. Yildirim, G., Jetchev, N., Vollgraf, R., Bergmann, U.: Generating high-resolution fashion model images wearing custom outfits. In: ICCV Workshops (2019)

    Google Scholar 

  44. Yoo, D., Kim, N., Park, S., Paek, A.S., Kweon, I.S.: Pixel-level domain transfer. In: ECCV (2016)

    Google Scholar 

  45. Yu, R., Wang, X., Xie, X.: VTNFP: an image-based virtual try-on network with body and clothing feature preservation. In: ICCV (2019)

    Google Scholar 

  46. Zhao, F., et al.: M3D-VTON: a monocular-to-3d virtual try-on network. In: ICCV (2021)

    Google Scholar 

  47. Zheng, N., Song, X., Chen, Z., Hu, L., Cao, D., Nie, L.: Virtually trying on new clothing with arbitrary poses. In: ACM Multimedia (2019)

    Google Scholar 

  48. Zhu, H., et al.: DeepFashion3D: a dataset and benchmark for 3d garment reconstruction from single images. In: ECCV (2020)

    Google Scholar 

Download references

Acknowledgments

We thank CINECA, the Italian Supercomputing Center, for providing computational resources. This work has been supported by the PRIN project “CREATIVE: CRoss-modal understanding and gEnerATIon of Visual and tExtual content” (CUP B87G22000460001), co-funded by the Italian Ministry of University and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcella Cornia .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 18840 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morelli, D., Fincato, M., Cornia, M., Landi, F., Cesari, F., Cucchiara, R. (2022). Dress Code: High-Resolution Multi-category Virtual Try-On. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20074-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20073-1

  • Online ISBN: 978-3-031-20074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics