Skip to main content

The Anatomy of Video Editing: A Dataset and Benchmark Suite for AI-Assisted Video Editing

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13668))

Included in the following conference series:

Abstract

Machine learning is transforming the video editing industry. Recent advances in computer vision have leveled-up video editing tasks such as intelligent reframing, rotoscoping, color grading, or applying digital makeups. However, most of the solutions have focused on video manipulation and VFX. This work introduces the Anatomy of Video Editing, a dataset, and benchmark, to foster research in AI-assisted video editing. Our benchmark suite focuses on video editing tasks, beyond visual effects, such as automatic footage organization and assisted video assembling. To enable research on these fronts, we annotate more than 1.5M tags, with relevant concepts to cinematography, from 196176 shots sampled from movie scenes. We establish competitive baseline methods and detailed analyses for each of the tasks. We hope our work sparks innovative research towards underexplored areas of AI-assisted video editing. Code is available at: https://github.com/dawitmureja/AVE.git.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We crawled the movie scenes from the MovieClips YouTube Channel.

  2. 2.

    We consider 3 intensify patterns: extreme-wide - wide - medium, wide - medium - close-up, medium - close-up - extreme-close-up.

References

  1. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the clustering structure. ACM SIGMOD Rec. 28(2), 49–60 (1999)

    Article  Google Scholar 

  2. Bain, M., Nagrani, A., Brown, A., Zisserman, A.: Condensed movies: story based retrieval with contextual embeddings (2020)

    Google Scholar 

  3. Baxter, M.: Comparing cutting patterns-a working paper. Present Webpage Question 3 (2013)

    Google Scholar 

  4. Bhattacharya, S., Mehran, R., Sukthankar, R., Shah, M.: Classification of cinematographic shots using lie algebra and its application to complex event recognition. IEEE Trans. Multimedia 16(3), 686–696 (2014)

    Article  Google Scholar 

  5. Canini, L., Benini, S., Leonardi, R.: Classifying cinematographic shot types. Multimedia Tools Appl. 62(1), 51–73 (2013)

    Article  Google Scholar 

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  7. Dancyger, K.: The Technique of Film and Video Editing: History, Theory, and Practice. Routledge, London (2018)

    Book  Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. El-Nouby, A., Zhai, S., Taylor, G.W., Susskind, J.M.: Skip-clip: self-supervised spatiotemporal representation learning by future clip order ranking. arXiv preprint arXiv:1910.12770 (2019)

  10. Gao, C., Saraf, A., Huang, J.-B., Kopf, J.: Flow-edge guided video completion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 713–729. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_42

    Chapter  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Hoai, M., Zisserman, A.: Thread-safe: towards recognizing human actions across shot boundaries. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 222–237. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_15

    Chapter  Google Scholar 

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  14. Huang, Q., Xiong, Yu., Rao, A., Wang, J., Lin, D.: MovieNet: a holistic dataset for movie understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 709–727. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_41

    Chapter  Google Scholar 

  15. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. arXiv preprint arXiv:1910.09217 (2019)

  16. Kasten, Y., Ofri, D., Wang, O., Dekel, T.: Layered neural atlases for consistent video editing. ACM Trans. Graph. (TOG) 40(6), 1–12 (2021)

    Article  Google Scholar 

  17. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  18. Khosla, P., et al.: Supervised contrastive learning. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 18661–18673. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf

  19. Kim, D., Cho, D., Kweon, I.S.: Self-supervised video representation learning with space-time cubic puzzles. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8545–8552 (2019)

    Google Scholar 

  20. Leake, M., Davis, A., Truong, A., Agrawala, M.: Computational video editing for dialogue-driven scenes. ACM Trans. Graph. 36(4), 130-1 (2017)

    Google Scholar 

  21. Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1871–1880 (2019)

    Google Scholar 

  22. Liu, X., Hu, Y., Bai, S., Ding, F., Bai, X., Torr, P.H.: Multi-shot temporal event localization: a benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12596–12606 (2021)

    Google Scholar 

  23. Liu, Y.L., Lai, W.S., Yang, M.H., Chuang, Y.Y., Huang, J.B.: Learning to see through obstructions with layered decomposition. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  24. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  26. Lu, E., Cole, F., Dekel, T., Zisserman, A., Freeman, W.T., Rubinstein, M.: Omnimatte: associating objects and their effects in video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4507–4515 (2021)

    Google Scholar 

  27. Menon, A.K., Jayasumana, S., Rawat, A.S., Jain, H., Veit, A., Kumar, S.: Long-tail learning via logit adjustment. arXiv preprint arXiv:2007.07314 (2020)

  28. Metz, C.: Film Language: A Semiotics of the Cinema. University of Chicago Press, Chicago (1991)

    Google Scholar 

  29. Müllner, D.: Modern hierarchical, agglomerative clustering algorithms. arXiv preprint arXiv:1109.2378 (2011)

  30. Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9226–9235 (2019)

    Google Scholar 

  31. Pardo, A., Caba, F., Alcázar, J.L., Thabet, A.K., Ghanem, B.: Learning to cut by watching movies. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6858–6868 (2021)

    Google Scholar 

  32. Pardo, A., Heilbron, F.C., Alcázar, J.L., Thabet, A., Ghanem, B.: Moviecuts: a new dataset and benchmark for cut type recognition. arXiv preprint arXiv:2109.05569 (2021)

  33. Patwardhan, K.A., Sapiro, G., Bertalmío, M.: Video inpainting under constrained camera motion. IEEE Trans. Image Process. 16(2), 545–553 (2007)

    Article  MathSciNet  Google Scholar 

  34. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  35. Rao, A., et al.: A unified framework for shot type classification based on subject centric lens. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 17–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_2

    Chapter  Google Scholar 

  36. Sarfraz, S., Sharma, V., Stiefelhagen, R.: Efficient parameter-free clustering using first neighbor relations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2019)

    Google Scholar 

  37. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval, vol. 39. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  38. Smith, J.R., Joshi, D., Huet, B., Hsu, W., Cota, J.: Harnessing AI for augmenting creativity: application to movie trailer creation. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1799–1808 (2017)

    Google Scholar 

  39. Souček, T., Lokoč, J.: Transnet V2: an effective deep network architecture for fast shot transition detection. arXiv preprint arXiv:2008.04838 (2020)

  40. Tan, J., et al.: Equalization loss for long-tailed object recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11662–11671 (2020)

    Google Scholar 

  41. Tapaswi, M., Zhu, Y., Stiefelhagen, R., Torralba, A., Urtasun, R., Fidler, S.: Movieqa: understanding stories in movies through question-answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4631–4640 (2016)

    Google Scholar 

  42. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  43. Wang, H.L., Cheong, L.F.: Taxonomy of directing semantics for film shot classification. IEEE Trans. Circuits Syst. Video Technol. 19(10), 1529–1542 (2009)

    Article  Google Scholar 

  44. Wu, C.Y., Krahenbuhl, P.: Towards long-form video understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1884–1894 (2021)

    Google Scholar 

  45. Wu, H.Y., Christie, M.: Analysing cinematography with embedded constrained patterns. In: WICED-Eurographics Workshop on Intelligent Cinematography and Editing (2016)

    Google Scholar 

  46. Wu, H.Y., Palù, F., Ranon, R., Christie, M.: Thinking like a director: film editing patterns for virtual cinematographic storytelling. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 14(4), 1–22 (2018)

    Google Scholar 

  47. Xiao, J., et al.: Explore video clip order with self-supervised and curriculum learning for video applications. IEEE Trans. Multimedia 23, 3454–3466 (2021). https://doi.org/10.1109/TMM.2020.3025661

    Article  Google Scholar 

  48. Xu, M., et al.: Using context saliency for movie shot classification. In: 2011 18th IEEE International Conference on Image Processing, pp. 3653–3656. IEEE (2011)

    Google Scholar 

  49. Zhang, X., Li, Y., Han, Y., Wen, J.: AI video editing: a survey (2022)

    Google Scholar 

  50. Zhu, Y., et al.: Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 19–27 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawit Mureja Argaw .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 388 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Argaw, D.M., Heilbron, F.C., Lee, JY., Woodson, M., Kweon, I.S. (2022). The Anatomy of Video Editing: A Dataset and Benchmark Suite for AI-Assisted Video Editing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20074-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20073-1

  • Online ISBN: 978-3-031-20074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics